DNF Hypotheses in Explanatory Induction

  • Katsumi Inoue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7207)


This paper investigates the problem of computing hypotheses in disjunctive normal form (DNF) for explanatory induction. This is contrasted to the usual setting of ILP, where hypotheses are obtained in conjunctive normal form (CNF), i.e., a set of clauses. We present two approaches to compute DNF hypotheses as well as several sound and complete algorithms. This problem naturally contains abduction from clausal theories, and can be related to model-based inductive reasoning, in which propositional reasoning methods such as SAT techniques and prime implicant computation can be utilized.


Conjunctive Normal Form Inductive Logic Programming Disjunctive Normal Form Weak Hypothesis Conjunctive Normal Form Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eiter, T., Makino, K.: On computing all abductive explanations from a propositional Horn theory. J. ACM 54(5), Article 24 (2007)Google Scholar
  2. 2.
    Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)zbMATHCrossRefGoogle Scholar
  4. 4.
    Inoue, K.: Logic programming for Boolean networks. In: Proceedings of IJCAI 2011, pp. 924–930 (2011)Google Scholar
  5. 5.
    Inoue, K., Sakama, C.: Disjunctive Explanations. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 317–332. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an EM algorithm on BDDs. In: Proceedings of IJCAI 2009, pp. 810–815 (2009)Google Scholar
  7. 7.
    Jin, H.S., Han, H.J., Somenzi, F.: Efficient Conflict Analysis for Finding All Satisfying Assignments of a Boolean Circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Khardon, R., Roth, D.: Reasoning with models. Artificial Intelligence 87, 187–213 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kautz, H., Kearns, M., Selman, B.: Reasoning with characteristic models. In: Proceedings of AAAI 1993, pp. 34–39. AAAI Press (1993)Google Scholar
  10. 10.
    Kean, A., Tsiknis, G.: An incremental method for generating prime implicants/implicates. J. Symbolic Computation 9, 185–206 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press (1994)Google Scholar
  12. 12.
    Laird, P.D.: Learning from Good and Bad Data. Kluwer Academic (1988)Google Scholar
  13. 13.
    Levesque, H.: Making believers out of computers. Artificial Intelligence 30, 81–108 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marquis, P.: Consequence finding algorithms. In: Gabbay, D.M., Smets, P. (eds.) Handbook for Defeasible Reasoning and Uncertain Management Systems, vol. 5, pp. 41–145. Kluwer Academic (2000)Google Scholar
  15. 15.
    McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Midelfart, H.: A Bounded Search Space of Clausal Theories. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, pp. 210–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)CrossRefGoogle Scholar
  18. 18.
    Muggleton, S., Buntine, W.: Machine invention of first-order predicate by inverting resolution. In: Proc. ML 1988, pp. 339–351. Morgan Kaufmann (1988)Google Scholar
  19. 19.
    Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23, 183–203 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Plotkin, G.D.: A note on inductive generalization. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp. 153–163. Edinburgh University Press (1970)Google Scholar
  21. 21.
    Reiter, R., de Kleer, J.: Foundations of assumption-based truth maintenance systems: preliminary report. In: Proceedings of AAAI 1987, pp. 183–187 (1987)Google Scholar
  22. 22.
    Sebag, M.: Delaying the choice of bias: A disjunctive version space approach. In: Proceedings of ICML 1996, pp. 444–452. Morgan Kaufmann (1996)Google Scholar
  23. 23.
    Simon, L., del Val, A.: Efficient consequence finding. In: Proceedings of IJCAI 2001, pp. 359–365 (2001)Google Scholar
  24. 24.
    Tison, P.: Generalized consensus theory and application to the minimization of Boolean functions. IEEE Trans. on Electronic Computers 16(4), 446–456 (1967)zbMATHCrossRefGoogle Scholar
  25. 25.
    Yamamoto, A., Fronhöfer, B.: Hypotheses Finding via Residue Hypotheses with the Resolution Principle. In: Arimura, H., Sharma, A.K., Jain, S. (eds.) ALT 2000. LNCS (LNAI), vol. 1968, pp. 156–165. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Yamamoto, Y., Inoue, K., Iwanuma, K.: Inverse subsumption for complete explanatory induction. Machine Learning 86(1), 115–139 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Katsumi Inoue
    • 1
  1. 1.National Institute of InformaticsChiyoda-kuJapan

Personalised recommendations