Expressive Power of Safe First-Order Logical Decision Trees

  • Joris J. M. Gillis
  • Jan Van den Bussche
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7207)


This paper characterizes the expressive power of a subclass of first-order logical decision trees (FOLDTs) as a fragment of first-order logic. Specifically, using safe FOLDTs one can express precisely the boolean combinations of safe existential sentences.


Free Variable Expressive Power Inductive Logic Programming Relation Symbol Boolean Combination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blockeel, H., De Raedt, L.: Top-down induction of first-order logical decision trees. Artificial Intelligence 101, 285–297 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Blockeel, H., Dehaspe, L., Ramon, J., Struyf, J., Van Assche, A., Vens, C., Fierens, D.: The ace data mining system (2008)Google Scholar
  3. 3.
    Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele, H.: Improving the efficiency of inductive logic programming through the use of query packs. Journal of Artificial Intelligence Research 16, 135–166 (2002), zbMATHGoogle Scholar
  4. 4.
    Chandra, A., Harel, D.: Structure and complexity of relational queries. Journal of Computer and System Sciences 25(1), 99–128 (1982)zbMATHCrossRefGoogle Scholar
  5. 5.
    De Raedt, L.: Logical and Relational Learning. Cognitive Technologies. Springer (2008)Google Scholar
  6. 6.
    Martin, É., Sharma, A., Stephan, F.: A General Theory of Deduction, Induction, and Learning. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 228–242. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Ohsherson, D., Weinstein, S.: Identification in the limit of first order structures. Journal of Philiosophical Logic 15, 55–81 (1986)Google Scholar
  8. 8.
    Osherson, D., Stob, M., Weinstein, S.: A universal inductive inference machine. The Journal of Symbolic Logic 56, 661–672 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Terwijn, S.: Learning and computing in the limit. In: Logic Colloquium 2002. Lect. Notes Log., vol. 27, pp. 349–359. Assoc. Symbol. Logic, La Jolla (2006)Google Scholar
  10. 10.
    Ullman, J.: Principles of Database and Knowledge-Base Systems, vol. I. Computer Science Press (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joris J. M. Gillis
    • 1
    • 2
  • Jan Van den Bussche
    • 1
    • 2
  1. 1.Hasselt UniversityBelgium
  2. 2.Transnational University of LimburgBelgium

Personalised recommendations