Skip to main content

Graph-Based Relational Learning with a Polynomial Time Projection Algorithm

  • Conference paper
Inductive Logic Programming (ILP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7207))

Included in the following conference series:

Abstract

The paper presents a new projection operator, named AC- projection, which exhibits good complexity properties as opposed to the graph isomorphism operator typically used in graph mining. We study the size and structure of the search space and some practical properties of the projection operator. These properties give us a specialization algorithm using simple local operations. Then we prove experimentally that we can achieve an important performance gain without or with non-significant loss of discovered patterns quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bessière, C., Régin, J.-C.: Mac and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  2. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons (2006)

    Google Scholar 

  3. Debnath, A., Compadre, R.D., Debnath, G., Schusterman, A., Hansch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Medicinal Chemistry 34 (1991)

    Google Scholar 

  4. Hell, P., Nesetril, J.: Graphs and homomorphism, vol. 28. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  5. Helma, C., King, R.D., Kramer, S., Srinivasan, A.: The predictive toxicology challenge 2000-2001. Bioinformatics 17(1), 107–108 (2001)

    Article  Google Scholar 

  6. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) International Conference on Data Mining, pp. 313–320. IEEE Computer Society (2001)

    Google Scholar 

  7. Liquiere, M.: Arc Consistency Projection: A New Generalization Relation for Graphs. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 333–346. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Malerba, D., Lisi, F.A.: Discovering Associations between Spatial Objects: An ILP Application. In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 156–163. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Nienhuys-Cheng, S.H., de Wolf, R.: Least generalizations and greatest specializations of sets of clauses. CoRR cs.AI/9605102 (1996)

    Google Scholar 

  10. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)

    Google Scholar 

  11. Provost, F.J., Fawcett, T.: Robust Classification for Imprecise Environments. Machine Learning 42(3), 203–231 (2001)

    Article  MATH  Google Scholar 

  12. Quinlan, J.R.: C4.5: Programs for Machine Learning, 1st edn. Morgan Kaufmann (January 1993)

    Google Scholar 

  13. Sowa, J.F.: Conceptual graphs summary, pp. 3–51. Ellis Horwood (1992)

    Google Scholar 

  14. Wessel, M.D., Jurs, P.C., Tolan, J.W., Muskal, S.M.: Prediction of human intestinal absorption of drug compounds from molecular structure. Journal of Chemical Information and Computer Sciences 38(4), 726–735 (1998)

    Article  Google Scholar 

  15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers Inc., San Francisco (2005)

    MATH  Google Scholar 

  16. Wörlein, M., Meinl, T., Fischer, I., Philippsen, M.: A Quantitative Comparison of the Subgraph Miners MoFa, gSpan, FFSM, and Gaston. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 392–403. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Yan, X., Han, J.: gspan: Graph-based substructure pattern mining. In: International Conference on Data Mining, pp. 721–724. IEEE Computer Society (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Douar, B., Liquiere, M., Latiri, C., Slimani, Y. (2012). Graph-Based Relational Learning with a Polynomial Time Projection Algorithm. In: Muggleton, S.H., Tamaddoni-Nezhad, A., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2011. Lecture Notes in Computer Science(), vol 7207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31951-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31951-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31950-1

  • Online ISBN: 978-3-642-31951-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics