Skip to main content

How Bioinformatics Enables Livestock Applied Sciences in the Genomic Era

  • Conference paper
Advances in Bioinformatics and Computational Biology (BSB 2012)

Abstract

This review paper presents the three main approaches currently used in livestock genomic sciences where the bioinfomatics plays a critical role. They are named as Genomic Selection (GS), Genome Wide Association Study (GWAS) and Signatures of Selection (SS). The subsides for the construction of this article were generated in a current project (started in 2011), so called Zebu Genome Consortium (ZGC), which joins researchers from different institutions and countries, aiming to scientifically explore genomic information of Bos taurus indicus cattle breeds and deliver useful information to breeders and academic community, specially from the tropical regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FAO (Food and Agriculture Organization of United Nations) (2012), www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf

  2. Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E.: Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001)

    Google Scholar 

  3. Schaeffer, L.R.: Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 123, 218–223 (2006)

    Article  Google Scholar 

  4. Bovine Genome Sequencing and Analysis Consortium. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324(5926), 522–528 (2009)

    Google Scholar 

  5. Van Tassell, C.P., Smith, T.P., Matukumalli, L.K., Taylor, J.F., Schnabel, R.D., Lawley, C.T., Haudenschild, C.D., Moore, S.S., Warren, W.C., Sonstegard, T.S.: SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods 5(3), 247–252 (2008)

    Article  Google Scholar 

  6. Harris, B.L., Johnson, D.L., Spelman, R.J.: Genomic selection in New Zealand and the implications for national genetic evaluation. In: Proc. Interbull Meeting, Niagara Falls, Canada (2008)

    Google Scholar 

  7. VanRaden, P.M., Van Tassell, C.P., Wiggans, G.R., Sonstegard, T.S., Schnabel, R.D., Taylor, J.F., Schenkel, F.S.: Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92, 16–24 (2009)

    Article  Google Scholar 

  8. Moser, G., Tier, B., Crump, R.E., Khatkar, M.S., Raadsma, H.W.: A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Genet. Sel. Evol. 41, 56 (2009)

    Article  Google Scholar 

  9. Luan, T., Woolliams, J.A., Lien, S., Kent, M., Svendsen, M., Meuwissen, T.H.: The accuracy of genomic selection in Norwegian Red cattle assessed by cross-validation. Genetics 183, 1119–1126 (2009)

    Article  Google Scholar 

  10. Legarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F., Fritz, S.: Improved Lasso for genomic selection. Genet. Res. 93(1), 77–87 (2011)

    Article  Google Scholar 

  11. Frazer, K.A., et al.: Human genetic variation and its contribution to complex traits. Nature Reviews 10, 241–251 (2009)

    Google Scholar 

  12. Hirschhorn, J.N., Daly, M.J.: Genome-wide association studies for common diseases and complex traits. Nature Reviews 6(1), 95–198 (2005)

    Google Scholar 

  13. Pearson, T.A., Manolio, T.A.: How to Interpret a Genome-wide Association Study. Journal of American Medical Association 299(11), 1335–1344 (2008)

    Article  Google Scholar 

  14. Cantor, R.M., et al.: Prioritizing GWAS Results: A Review of Statistical Methods and Recommendations for Their Application. The American Journal of Human Genetics 86, 6–22 (2010)

    Article  Google Scholar 

  15. Chan, E.K.F., et al.: The combined effect of SNP-marker and phenotype attributes in genome-wide association studies. Animal Genetics 40, 149–156 (2009)

    Article  Google Scholar 

  16. Chuang, H., et al.: A decade of Systems Biology. Reviews in Advance 20(1), 15–20 (2010)

    Google Scholar 

  17. Webber, C.: Functional Enrichment Analysis with Structural Variants: Pitfalls and Strategies. Cytogenet. Genome Res. 135, 277–285 (2011)

    Article  Google Scholar 

  18. Fontanillo, C., et al.: Functional Analysis beyond Enrichment: Non-Redundant Reciprocal Linkage of Genes and Biological Terms. PloS ONE 6(9), 242 (2011)

    Article  Google Scholar 

  19. The gene ontology consortium. Gene ontology: tool for the unification of biology. Nature Genetics 25(1), 25–29 (2000)

    Google Scholar 

  20. Kanehisa, M., Goto, S.: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  21. Oleksyk, T.K., Smith, M.W., O’Brien, S.J.: Genome-wide scans for footprints of natural selection. Phil. Trans. R. Soc. B 365, 185–205 (2010)

    Article  Google Scholar 

  22. Sabeti, P.C., et al.: Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007)

    Article  Google Scholar 

  23. Tang, K., Thornton, K.R., Stoneking, M.: A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology 5, e171 (2007)

    Google Scholar 

  24. Grossman, S.R., et al.: A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 327, 883–886 (2010)

    Article  Google Scholar 

  25. Nielsen, R., Yang, Z.: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936 (1998)

    Google Scholar 

  26. Rubin, C.J., et al.: Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587–593 (2010)

    Article  Google Scholar 

  27. Tajima, F.: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989)

    Google Scholar 

  28. Williamson, S.H., Hubisz, M.J., Clark, A.G., Payseur, B.A., Bustamante, C.D., Nielsen, R.: Localizing recent adaptive evolution in the human genome. PLoS Genet. 3, e90 (2007)

    Google Scholar 

  29. Weir, B.S., Cockerham, C.C.: Estimating F-Statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984)

    Article  Google Scholar 

  30. Sabeti, P.C., et al.: Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002)

    Article  Google Scholar 

  31. Voight, B.F., Kudaravalli, S., Wen, X., Pritchard, J.K.: A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006)

    Google Scholar 

  32. Ong, R.T.-H., Teo, Y.Y.: varLD: a program for quantifying variation in linkage disequilibrium patterns between populations. Bioinformatics 26(9), 1269–1270 (2010)

    Article  Google Scholar 

  33. Gautier, M., Naves, M.: Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Molecular Ecology 20, 3128–3143 (2011)

    Article  Google Scholar 

  34. Qanbari, S., et al.: Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics 12, 318 (2011)

    Article  Google Scholar 

  35. Flori, L., et al.: The genome response to artificial selection: a case study in dairy cattle. PLoS ONE 4(8), e6595 (2009)

    Google Scholar 

  36. Kijas, J.W., et al.: Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology 10(2), e1001258 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garcia, J.F. et al. (2012). How Bioinformatics Enables Livestock Applied Sciences in the Genomic Era. In: de Souto, M.C., Kann, M.G. (eds) Advances in Bioinformatics and Computational Biology. BSB 2012. Lecture Notes in Computer Science(), vol 7409. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31927-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31927-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31926-6

  • Online ISBN: 978-3-642-31927-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics