Skip to main content

A Path Prediction Method for Human-Accompanying Mobile Robot Based on Neural Network

  • Conference paper
  • 3535 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7202))

Abstract

This paper presents a path prediction method for human-accompanying mobile robot such as robotic wheelchair, domestic robot and tour guide robot. An accompanying human is detected using an in-vehicle laser range sensor (LRS). A new filter gets a smoothed track from raw LRS data of human footprints. Back propagation neural network predicts future positions of the accompanying human from the human track. Based on the future positions, a cubic spline generates a future path of the accompanying human. The experimental result validates the feasibility of the path prediction method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson, R.C.: Smart wheelchairs: a literature review. J. of Rehabilitation Research and Development 42(2), 423–436 (2005)

    Article  Google Scholar 

  2. Simpson, R.C., Levine, S.P.: Voice control of a powered wheelchair. IEEE Trans. on Neural Systems and Rehabilitation Engineering 10(2), 122–125 (2002)

    Article  Google Scholar 

  3. Matsumoto, Y., Ino, T., Ogasawara, T.: Development of intelligent wheelchair system with face- and gaze based interface. In: Proc. of the 10th Int. Workshop IEEE Robot & Human Interactive Communication, pp. 262–267 (2001)

    Google Scholar 

  4. Hashimoto, M., Takahashi, K., Shimada, M.: Wheelchair control using EOG and EMG-based gesture interface. In: Proc. of IEEE/ ASME Int. Conf. on Advanced Intelligent Mechatronics (2009)

    Google Scholar 

  5. Ding, D., Cooper, R.A.: Electric-Powered Wheelchairs. IEEE Control Systems Magazine, 22–34 (2005)

    Google Scholar 

  6. Iwase, T., Rui, Z., Kuno, Y.: Robotic Wheelchair Moving with the Caregiver. In: SICE-ICASE International Joint Conference, pp. 238–243 (2006)

    Google Scholar 

  7. Miyazaki, K., Hashimoto, M., Shimada, M., Takahashi, K.: Guide Following Control Using Laser Range Sensor for a Smart Wheelchair. In: ICROS-SICE International Joint Conference, pp. 4613–4616 (2009)

    Google Scholar 

  8. Madhaw, H.S., Fleming, K.T., Nicholas, R., Seth, T.: Following and Interpreting narrated guided tours. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  9. Kobayashi, Y., Kinpara, Y., Shibusawa, T., Kuno, Y.: Robotic wheelchair based on observations of people using integrated sensors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  10. Koay, K.L., Syrdal, D.S., Walters, M.L., Dautenhahn, K.: Five weeks in the robot house-exploratory human-robot interaction trials in a domestic setting. In: Second International Conferences on Advances in Computer-Human Interactions (2009)

    Google Scholar 

  11. Sung, J.Y., Christensen, H.I., Grinter, R.E.: Sketching the future: assessing user needs for domestic robots. In: 18th IEEE International Symposium on Robot and Human Interactive Communication (2009)

    Google Scholar 

  12. Trieu, H.T., Nguyen, H.T., Willey, K.: Obstacle avoidance for power wheelchair using bayesian neural network. In: 29th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (2007)

    Google Scholar 

  13. Trieu, H.T., Nguyen, H.T., Willey, K.: Advanced obstacle avoidance for a laser based wheelchair using optimised Bayesian neural networks. In: 30th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society (2008)

    Google Scholar 

  14. Chang, C.C., Song, K.T.: Environment prediction for a mobile robot in a dynamic environment. IEEE Transactions on Robotics and Automation 13(6), 862–872 (1997)

    Article  Google Scholar 

  15. Payeur, P., Hoang, L.H., Gosselin, C.M.: Trajectory prediction for moving objects using artificial neural networks. IEEE Transactions on Industrial Electronics 42(2), 147–158 (1995)

    Article  Google Scholar 

  16. Sheng, Y., Wu, Y.: Motion prediction in a high-speed, dynamic environment. In: 17th IEEE International Conference on Tools with Artificial Intelligence (2005)

    Google Scholar 

  17. Najmaei, N., Kermani, M.R.: Prediction-based reactive control strategy for human-robot interactions. In: IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  18. Ruffin, C., King, R. L.: The analysis of hyperspectral data using Savitzky-Golay filtering-theoretical basis 1. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (1999)

    Google Scholar 

  19. King, R.L., Ruffin, C., LaMastus, F.E., Shaw, D.R.: The analysis of hyperspectral data using Savitzky-Golay filtering-practical issues. 2. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (1999)

    Google Scholar 

  20. Berger, C.S.: Synthesis of input signals for parameter identification using moving-average filter. Proceedings of the Institution of Electrical Engineers 126(12), 1311–1315 (1979)

    Article  Google Scholar 

  21. Chen, H.C., Chen, S.W.: A moving average based filtering system with its application to real-time QRS detection. Computers in Cardiology (2003)

    Google Scholar 

  22. Hashimoto, M., Ogata, S., Marayama, T.: A laser based multi-target tracking for mobile robot. Intelligent Autonomous Systems 9, 135–144 (2006)

    Google Scholar 

  23. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education Inc. (2009)

    Google Scholar 

  24. Reinsch, C.H.: Smoothing by spline functions. Numerische Mathematik 10, 177–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sugano, T., Yoshimura, K., Takayama, F.: Spline function by C language. Tokyo Denki University Press (1993) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, Z., Hashimoto, M., Guo, B., Takahashi, K. (2012). A Path Prediction Method for Human-Accompanying Mobile Robot Based on Neural Network. In: Zhang, Y., Zhou, ZH., Zhang, C., Li, Y. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2011. Lecture Notes in Computer Science, vol 7202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31919-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31919-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31918-1

  • Online ISBN: 978-3-642-31919-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics