Skip to main content

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes

  • Conference paper
Information Security and Cryptology - ICISC 2011 (ICISC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7259))

Included in the following conference series:

Abstract

Outsourced computations enable more efficient solutions towards practical problems that require major computations. Nevertheless, users’ privacy remains as a major challenge, as the service provider can access users’ data freely. It has been shown that fully homomorphic encryption schemes might be the perfect solution, as it allows one party to process users’ data homomorphically, without the necessity of knowing the corresponding secret keys. In this paper, we show a reaction attack against full homomorphic schemes, when they are used for securing outsourced computation. Essentially, our attack is based on the users’ reaction towards the output generated by the cloud. Our attack enables us to retrieve the associated secret key of the system. This secret key attack takes O(λlogλ) time for both Gentry’s original scheme and the fully homomorphic encryption scheme over integers, and O(λ) for the implementation of Gentry’s fully homomorphic encryption scheme.

This work is supported by ARC Future Fellowship FT0991397.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-preserving cloud computing. Cryptology ePrint Archive, Report 2010/305 (2010), http://eprint.iacr.org/

  2. Gennaro, R., Gentry, C., Parno, B.: Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

    Google Scholar 

  3. Gentry, C.: A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford University (2009)

    Google Scholar 

  4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) STOC, pp. 169–178. ACM (2009)

    Google Scholar 

  5. Hall, C., Goldberg, I., Schneier, B.: Reaction Attacks against Several Public-Key Cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 2–12. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616. IEEE Computer Society (2009)

    Google Scholar 

  7. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–177. Academic Press (1978)

    Google Scholar 

  8. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Smart, N.P., Vercauteren, F.: Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Stehlé, D., Steinfeld, R.: Faster Fully Homomorphic Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Gentry, C., Halevi, S.: Implementing Gentry’s Fully-Homomorphic Encryption Scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among Notions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

    Google Scholar 

  15. Georgii, H.O.: Stochastics: Introduction to Probability and Statistics (de Gruyter Textbook), 1st edn. Walter de Gruyter (2008)

    Google Scholar 

  16. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-Secure Somewhat Homomorphic Encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and Rerandomizable Yao Circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010)

    Google Scholar 

  18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping. Electronic Colloquium on Computational Complexity (ECCC) 18, 111 (2011)

    Google Scholar 

  19. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97–105 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Z., Plantard, T., Susilo, W. (2012). Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes. In: Kim, H. (eds) Information Security and Cryptology - ICISC 2011. ICISC 2011. Lecture Notes in Computer Science, vol 7259. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31912-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31912-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31911-2

  • Online ISBN: 978-3-642-31912-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics