Skip to main content

Biomechanical Properties and Behaviours of the Wrist Joint

  • Chapter
  • First Online:
Book cover Computational Biomechanics of the Wrist Joint

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 1248 Accesses

Abstract

Previous experimental and computational studies have outlined several properties and behaviours of the wrist joint. This chapter compiled relevance inputs associated with the biomechanical considerations of the joint, consisting of contact analyses at the articulations and load transmission throughout the joint. The succeeding sections present information on the biomechanical properties of the cartilages and ligamentous structure. It was addressed that due to difficulties in accessing the articulations in the wrist joint, investigations on the articular cartilages were mainly done through computer simulations. For the ligaments, a typical stress strain curve was used to mimic its mechanical behaviour. The principal load behaviour of ligaments with respect to their elongation during constant elongation-rate has evident the existence of the toe-regions, thus addressing its viscoelastic behaviour. Information on current methods in biomechanical modelling—rigid body spring and finite element—is also presented. Greater emphasize was given to the finite element method due to its appropriateness in performing contact analysis in the wrist joint. Facts and findings from previous finite element studies were included to support future understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Short WH, Werner FW, Fortino MD, Mann KA (1997) Analysis of the kinematics of the scaphoid and lunate in the intact wrist joint. Hand Clin 13(1):93–108

    Google Scholar 

  2. Werner FW (1995) Principles of musculoskeletal biomechanics-wrist. In: Peimer CA (ed) Surgery of the hand and upper extremity. McGraw-Hill, Toronto, pp 31–42

    Google Scholar 

  3. Viegas SF, Patterson RM (1997) Load mechanics of the wrist. Hand Clin 13(1):109–128

    Google Scholar 

  4. Patterson RVS (1995) Biomechanics of the wrist. J Hand Ther 8(2):97–105

    Article  MathSciNet  Google Scholar 

  5. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, Altman RD, Christiansen C (2008) Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil 16(6):638–646

    Article  Google Scholar 

  6. Goldsmith AAJ, Hayes A, Clift SE (1996) Application of finite elements to the stress analysis of articular cartilage. Med Eng Phys 18(2):89–98

    Article  Google Scholar 

  7. Shirazi R, Shirazi-Adl A (2005) Analysis of articular cartilage as a composite using nonlinear membrane elements for collagen fibrils. Med Eng Phys 27(10):827–835

    Article  Google Scholar 

  8. Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 14(9):673–682

    Article  Google Scholar 

  9. Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu C-J, Lammi MJ, Korhonen RK (2008) Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. J Biomech 41(9):1978–1986

    Article  Google Scholar 

  10. Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37(3):357–366

    Article  Google Scholar 

  11. Soltz MA, Ateshian GA (2000) A Conewise Linear Elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122(6):576–586

    Article  Google Scholar 

  12. Hingorani RV, Provenzano PP, Lakes RS, Escarcega A, Vanderby R (2004) Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32(2):306–312

    Article  Google Scholar 

  13. An K, Berger RA (1991) Biomechanics of the wrist joint. Springer, New York

    Google Scholar 

  14. Johnston JD, Small CF, Bouxsein ML, Pichora DR (2004) Mechanical properties of the scapholunate ligament correlate with bone mineral density measurements of the hand. J Orthop Res 22(4):867–871

    Article  Google Scholar 

  15. Viegas SF, Patterson RM, Hokanson JA, Davis J (1993) Wrist anatomy: incidence, distribution, and correlation of anatomic variations, tears, and arthrosis. J Hand Surg 18(3):463–475

    Article  Google Scholar 

  16. Nowalk MD, Logan SE (1991) Distinguishing biomechanical properties of intrinsic and extrinsic human wrist ligaments. J Biomech Eng 113(1):85–93

    Article  Google Scholar 

  17. Savelberg HH, Kooloos JG, Huiskes R, Kauer JM (1992) Stiffness of the ligaments of the human wrist joint. J Biomech 25:369–376

    Article  Google Scholar 

  18. Bettinger PC, Smutz WP, Linscheid RL, Cooney WP, An K-N (2000) Material properties of the trapezial and trapeziometacarpal ligaments. J Hand Surg 25(6):1085–1095

    Article  Google Scholar 

  19. Savelberg HH, Kooloos JG, Huiskes R, Kauer JM (1993) An indirect method to assess wrist ligament forces with particular regard to the effect of preconditioning. J Biomech 26(11):1347–1351

    Article  Google Scholar 

  20. Savelberg HH, Kooloos JG, Huiskes R, Kauer JM (1992) Strains and forces in selected carpal ligaments during in vitro flexion and deviation movements of the hand. J Orthop Res 10(6):901–910

    Article  Google Scholar 

  21. Genda E, Horii E (2000) Theoretical stress analysis in wrist joint—neutral position and functional position. J Hand Surg (British Eur Vol) 25:292–295

    Article  Google Scholar 

  22. Iwasaki N, Genda E, Barrance PJ, Minami A, Kaneda K, Chao EYS (1998) Biomechanical analysis of limited intercarpal fusion for the treatment of Kienböck’s disease: a three-dimensional theoretical study. J Orthop Res 16(2):256–263

    Article  Google Scholar 

  23. Manal K, Lu X, Nieuwenhuis MK, Helders PJM, Buchanan TS (2002) Force transmission through the juvenile idiopathic arthritic wrist: a novel approach using a sliding rigid body spring model. J Biomech 35(1):125–133

    Article  Google Scholar 

  24. Schuind F, Cooney WP, Linscheid RL, An KN, Chao EYS (1995) Force and pressure transmission through the normal wrist. A theoretical two-dimensional study in the posteroanterior plane. J Biomech 28(5):587–601

    Article  Google Scholar 

  25. Fischli S, Sellens RW, Beek M, Pichora DR (2009) Simulation of extension, radial and ulnar deviation of the wrist with a rigid body spring model. J Biomech 42(9):1363–1366

    Article  Google Scholar 

  26. Hutton DV (2004) Fundamentals of finite element analysis. McGraw Hill: Higher Education, New York

    Google Scholar 

  27. Donald BJM (2007) Pratical stress analysis with finite element. Glasnevin P, Ireland

    Google Scholar 

  28. Lo SH, Ling C (2000) Improvement on the 10-node tetrahedral element for three-dimensional problems. Comput Methods Appl Mech Eng 189(3):961–974

    Article  MATH  Google Scholar 

  29. Yoshimura S, Wada Y, Yagawa G (1999) Automatic mesh generation of quadrilateral elements using intelligent local approach. Comput Methods Appl Mech Eng 179(1–2):125–138

    Article  MATH  Google Scholar 

  30. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41(3):587–594

    Article  Google Scholar 

  31. Anderson AE, Ellis BJ, Maas SA, Weiss JA (2010) Effects of idealized joint geometry on finite element predictions of cartilage contact stresses in the hip. J Biomech 43(7):1351–1357

    Article  Google Scholar 

  32. Janssen D, Mann KA, Verdonschot N (2008) Micro-mechanical modeling of the cement-bone interface: the effect of friction, morphology and material properties on the micromechanical response. J Biomech 41(15):3158–3163

    Article  Google Scholar 

  33. Kayabasi O, Ekici B (2007) The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Mater Des 28(8):2269–2277

    Article  Google Scholar 

  34. Teoh SH, Chan WH, Thampuran R (2002) An elasto-plastic finite element model for polyethylene wear in total hip arthroplasty. J Biomech 35(3):323–330

    Article  Google Scholar 

  35. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1997) Finite element analysis of human knee joint in varus-valgus. Clin Biomech 12(3):139–148

    Article  Google Scholar 

  36. Boyd SK, Müller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17(4):687–694

    Article  Google Scholar 

  37. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng 123(4):341–346

    Article  MATH  Google Scholar 

  38. Peña E, Calvo B, Martínez MA, Doblaré M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39(9):1686–1701

    Article  Google Scholar 

  39. Peña E, Calvo B, Martínez MA, Doblaré M (2007) Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Comput Biol Med 37(3):376–387

    Article  Google Scholar 

  40. Kim S-H, Chang S-H, Jung H-J (2010) The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. Compos Struct 92(9):2109–2118

    Article  Google Scholar 

  41. Varga P, Baumbach S, Pahr D, Zysset PK (2009) Validation of an anatomy specific finite element model of Colles’ fracture. J Biomech 42(11):1726–1731

    Article  Google Scholar 

  42. Radev BR, Kase JA, Askew MJ, Weiner SD (2009) Potential for thermal damage to articular cartilage by PMMA reconstruction of a bone cavity following tumor excision: a finite element study. J Biomech 42(8):1120–1126

    Article  Google Scholar 

  43. Guo X, Fan Y, Li Z-M (2009) Effects of dividing the transverse carpal ligament on the mechanical behavior of the carpal bones under axial compressive load: a finite element study. Med Eng Phys 31(2):188–194

    Article  Google Scholar 

  44. Gislason MK, Nash DH, Nicol A, Kanellopoulos A, Bransby-Zachary M, Hems T, Condon B, Stansfield B (2009) A three-dimensional finite element model of maximal grip loading in the human wrist. Proc Inst Mech Eng 223(7):849–861

    Google Scholar 

  45. Gislason MK, Nash DH, Stansfield B (2008) In vivo contact stresses at the radiocarpal joint using a finite element method of the complete wrist joint. J Biomech 41(Suppl 1):S147–S147

    Article  Google Scholar 

  46. Gislason MK, Stansfield B, Nash DH (2010) Finite element model creation and stability considerations of complex biological articulation: the human wrist joint. Med Eng Phys 32(5):523–531

    Article  Google Scholar 

  47. Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725

    Article  Google Scholar 

  48. Ezquerro F, Jiménez S, Pérez A, Prado M, de Diego G, Simón A (2007) The influence of wire positioning upon the initial stability of scaphoid fractures fixed using Kirschner wires: a finite element study. Med Eng Phys 29(6):652–660

    Article  Google Scholar 

  49. Oda M, Hashizume H, Miyake T, Inoue H, Nagayama N (2000) A stress distribution analysis of a ceramic lunate replacement for Kienböck’s disease. J Hand Surg (British Eur Vol) 25:492–498

    Google Scholar 

  50. Carrigan S (2002) Development of a static carpal load transmission model using finite element method. Queen’s University, Kingston

    Google Scholar 

  51. Cheng H-YK, Lin C-L, Lin Y-H, Chen AC-Y (2007) Biomechanical evaluation of the modified double-plating fixation for the distal radius fracture. Clin Biomech 22(5):510–517

    Article  MathSciNet  Google Scholar 

  52. Troy KL, Grabiner MD (2007) Off-axis loads cause failure of the distal radius at lower magnitudes than axial loads: a finite element analysis. J Biomech 40(8):1670–1675

    Article  Google Scholar 

  53. Donzelli PS, Spilker RL, Ateshian GA, Mow VC (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J Biomech 32(10):1037–1047

    Article  Google Scholar 

  54. Blankevoort L, Kuiper JH, Huiskes R, Grootenboer HJ (1991) Articular contact in a three-dimensional model of the knee. J Biomech 24(11):1019–1031

    Article  Google Scholar 

  55. Ledoux P, Lamblin D, Targowski R (2001) Modifications to the mechanical behavior of the wrist after fracture of the scaphoid. Modeling by finite element analysis. Acta Orthop Belg 67(3):236–241

    Google Scholar 

  56. Li G, Gil J, Kanamori A, Woo SLY (1999) A validated three-dimensional computational model of a human knee joint. J Biomech Eng 121(6):657–662

    Article  Google Scholar 

  57. Li G, Sakamoto M, Chao EYS (1997) A comparison of different methods in predicting static pressure distribution in articulating joints. J Biomech 30(6):635–638

    Article  Google Scholar 

  58. Li Z, Kim JE, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 40(12):2758–2766

    Article  Google Scholar 

  59. Trabelsi O, del Palomar AP, López-villalobos JL, Ginel A, Doblaré M (2010) Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Med Eng Phys 32(1):76–82

    Article  Google Scholar 

  60. Swieszkowski W, Ku DN, Bersee HEN, Kurzydlowski KJ (2006) An elastic material for cartilage replacement in an arthritic shoulder joint. Biomaterials 27(8):1534–1541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Nazri Bajuri .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajuri, M.N., Abdul Kadir, M.R. (2013). Biomechanical Properties and Behaviours of the Wrist Joint. In: Computational Biomechanics of the Wrist Joint. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31906-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31906-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31905-1

  • Online ISBN: 978-3-642-31906-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics