Skip to main content

Fermentation Strategies Explored for Xylitol Production

  • Chapter
  • First Online:
D-Xylitol

Abstract

This chapter reviews different fermentation strategies for xylitol production using synthetic media or hemicellulosic hydrolyzates as carbon source. Most of the published works were carried out with free cells in batch operation because of its versatility and easy use in preliminary tests, where the age of inoculum, cell recycling, initial cell concentration, pH, temperature, type and concentration of nutrients in the culture medium, initial xylose concentration, presence of carbon sources other than xylose, and dissolved oxygen level were selected as the main variables. Conversely, continuous fermentation systems were shown to offer additional advantages such as high productivity for long periods of time, elimination of idle time for cleaning and sterilization and simplicity to perform an automated control. The most attractive equipment employed for this purpose included the continuous flow stirred tank, crossflow membrane and submerged membrane bioreactors. The use of cells immobilized by adsorption, entrapment, or covalent binding showed several advantages compared to the free ones, including higher cell density and possible biomass recycling for continuous operation. Repeated-batch fermentations were also investigated to evaluate the durability of immobilized cells with the aim of implementing the technology into a continuous process or scaling up the conversion of xylose to xylitol. Seeking long-term stability, the packed bed and fluidized bed bioreactors proved to be the most effective equipment; however, their hydrodynamic characteristics and the influence of aeration rate on fermentation performance still deserve further efforts. Finally, the fed-batch process, mainly with free cells, was also reported as an effective tool to keep the substrate at a suitable level throughout the whole fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguiar WB, Faria LFF, Couto MAPG, Araújo OQF, Pereira Jr. N (2002) Growth model and prediction of oxygen transfer rate for xylitol production from d-xylose by C. guilliermondii. Biochem Eng J 12:49–59

    Google Scholar 

  • Akinterinwa O, Cirino PC (2009) Heterologous expression of d-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab Eng 11:48–55

    Article  PubMed  CAS  Google Scholar 

  • Aranda-Barradas JS, Delia ML, Riba JP (2000) Kinetic study and modelling of the xylitol production using Candida parapsilosis in oxygen-limited culture conditions. Bioproc Eng 22:219–225

    Article  CAS  Google Scholar 

  • Audet P, Lacroix C, Paquin C (1991) Continuous fermentation of a supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. Thermophilicus. Int Dairy J 1:1–15

    Article  Google Scholar 

  • Barbosa MFS, Medeiros MB, Mancilha IM, Schneider H, Lee H (1988) Screening of yeasts for production of xylitol from d-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 3:241–251

    Article  CAS  Google Scholar 

  • Baudel HM, Abreu CAM, Zaror CZ (2005) Xylitol production via catalytic hydrogenation of sugarcane bagasse dissolving pulp liquid effluents over Ru/C catalyst. J Chem Technol Biotechnol 80:230–233

    Article  CAS  Google Scholar 

  • Béjar P, Casas C, Godia F, Solà C (1992) The influence of physical properties on the operation of a three phase fluidized bed fermentor with yeast cells immobilized in Ca-alginate. Appl Biochem Biotechnol 34–35(1):467–475

    Article  Google Scholar 

  • Cao NJ, Tang R, Gong CS, Chen LF (1994) The effect of cell density on the production of xylitol from d-xylose by yeast. Appl Biochem Biotechnol 45–46:515–519

    Article  PubMed  Google Scholar 

  • Cao NJ, Krishnan MS, Du JX, Gong CS, Ho NWY, Chen ZD, Tsao GT (1996) Ethanol production from corn cob pretreated by the ammonia steeping process using genetically engineered yeast. Biotechnol Lett 18:1013–1018

    Article  CAS  Google Scholar 

  • Carvalho W, Da Silva SS, Vitolo M, De Mancilha IM (2000) Use of immobilized Candida cells on xylitol production from sugarcane bagasse. Z Naturforsch C 55(3–4):213–217

    PubMed  Google Scholar 

  • Carvalho W, Silva SS, Converti A, Vitolo M (2002a) Metabolic behavior of immobilized cells of Candida guilliermondii during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169

    Article  PubMed  CAS  Google Scholar 

  • Carvalho W, Silva SS, Vitolo M, Felipe MGA, Mancilha IM (2002b) Improvement in xylitol production from sugarcane bagasse hydrolyzate achieved by the use of a repeated-batch immobilized cell system. Z Naturforsch C 57(1–2):109–112

    PubMed  CAS  Google Scholar 

  • Carvalho W, Silva SS, Converti A, Vitolo M, Felipe MGA, Roberto IC, Silva MB, Mancilha IM (2002c) Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolyzate: cell immobilization conditions. Appl Biochem Biotechnol 98–100:489–496

    Article  PubMed  Google Scholar 

  • Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti (2005) A Xylitol production from sugarcane bagasse hydrolyzate. Metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31

    Google Scholar 

  • Carvalho W, Canilha L, Silva SS (2008) Semi-continuous xylose to xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Bioproc Biosyst Eng 31:493–498

    Article  CAS  Google Scholar 

  • Chen LF, Gong CS (1985) Fermentation of sugarcane bagasse hemicellulose hydrolyzate to xylitol by a hydrolyzate-acclimatized yeast. J Food Sci 50:226–228

    Article  CAS  Google Scholar 

  • Choi JH, Moon KH, Ryu YW, Seo JH (2000) Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnol Lett 22:1625–1628

    Article  CAS  Google Scholar 

  • Converti A, Domínguez JM (2001) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii. Biotechnol Bioeng 75:39–45

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Perego P, Domínguez JM (1999) Microaerophilic metabolism of Pachysolen tannophilus at different pH values. Biotechnol Lett 21:719–723

    Article  CAS  Google Scholar 

  • Converti A, Perego P, Domínguez JM, Silva SS (2001) Effect of temperature on the microaerophilic metabolism of Pachysolen tannophilus. Enzyme Microb Technol 28:339–345

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Perego P, Sordi A, Torre P (2002) Effect of starting xylose concentration on the microaerobic metabolism of Debaryomyces hansenii: the use of carbon material balances. Appl Biochem Biotechnol 101:15–29

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Torre P, De Luca E, Perego P, Del Borghi M, Silva SS (2003) Continuous xylitol production from synthetic xylose solutions by Candida guilliermondii: influence of pH and temperature. Eng Life Sci 3:193–198

    Article  CAS  Google Scholar 

  • Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000a) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14:79–97

    Article  CAS  Google Scholar 

  • Cruz JM, Domínguez JM, Domínguez H, Parajó JC (2000b) Xylitol production from barley bran hydrolyzates by continuous fermentation with Debaryomyces hansenii. Biotechnol Lett 22:1895–1898

    Article  CAS  Google Scholar 

  • Cunha MAA, Converti A, Santos JC, Silva SS (2006) Yeast immobilization in LentiKats®: a new strategy for xylitol bioproduction from sugarcane bagasse. World J Microbiol Biotechnol 22:65–72

    Article  CAS  Google Scholar 

  • Cunha MAA, Rodrigues RCB, Santos JC, Converti A, Silva SS (2007) Repeated-batch xylitol bioproduction using yeast cells entrapped in polyvinyl alcohol-hydrogel. Curr Microbiol 54:91–96

    Article  PubMed  CAS  Google Scholar 

  • Dahiya JS (1991) Xylitol production by Petromyces albertensis grown on medium containing d-xylose. Can J Microbiol 37:14–18

    Article  CAS  Google Scholar 

  • De Andrade Rodrigues DCG, Da Silva SS, Vitolo M (2002) Influence of pH on the xylose reductase activity of Candida guilliermondii during fed-batch xylitol bioproduction. J Basic Microb 42(3):201–206

    Article  Google Scholar 

  • Delgado S, Díaz F, Vera L, Díaz R, Elmaleh S (2004) Modelling hollow-fibre ultrafiltration of biologically treated wastewater with and without gas sparging. J Membr Sci 228:55–63

    Article  CAS  Google Scholar 

  • Domínguez JM (1998) Xylitol production by free and immobilized Debaryomyces hansenii. Biotechnol Lett 20:53–56

    Article  Google Scholar 

  • Domínguez JM, Gong CS, Tsao GT (1996) Pretreatment of sugar cane bagasse hemicellulose hydrolyzate for xylitol production by yeast. Appl Biochem Biotechnol 57–58:49–56

    Article  PubMed  Google Scholar 

  • Domínguez JM, Gong CS, Tsao GT (1997) Production of xylitol from d-xylose by Debaryomyces hansenii. Appl Biochem Biotechnol 63–65:117–127

    Article  PubMed  Google Scholar 

  • Domínguez JM, Cruz JM, Roca E, Domínguez H, Parajó JC (1999) Xylitol production from wood hydrolyzates by entrapped Debaryomyces hansenii and Candida guilliermondii cells. Appl Biochem Biotechnol 81:119–130

    Article  PubMed  Google Scholar 

  • du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Tech 16:944–956

    Article  Google Scholar 

  • El-Batal AI, Khalaf SA (2004) Xylitol production from corn cobs hemicellulosic hydrolyzate by Candida tropicalis immobilized cells in hydrogel copolymer carrier. Int J Agric Biol 6:1066–1073

    CAS  Google Scholar 

  • Faria LFF, Gimenes MAP, Nobrega R, Pereira N Jr (2002a) Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. Appl Biochem Biotechnol 98–100:449–458

    Google Scholar 

  • Faria LFF, Pereira N Jr, Nobrega R (2002b) Xylitol production from d-xylose in a membrane bioreactor. Desalination 149:231–236

    Google Scholar 

  • Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997a) Environmental parameters affecting xylitol production from sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii. J Ind Microbiol Biotechnol 18:251–254

    Article  CAS  Google Scholar 

  • Felipe MGA, Vitolo M, Mancilha IM, Silva SS (1997b) Fermentation of sugar cane bagasse hemicellulosic hydrolyzate for xylitol production: effect of pH. Biomass Bioenerg 13:11–14

    Article  CAS  Google Scholar 

  • Furlan SA, Castro HF (2001) Xylitol production by Candida parapsilosis under fed-batch culture. Braz Arch Biol Technol 44:125–128

    Article  CAS  Google Scholar 

  • Furlan SA, Delia-Dupuy ML, Strehaiano P (1997) Short communication: xylitol production in repeated fed batch cultivation. World J Microbiol Biotechnol 13:591–592

    Article  CAS  Google Scholar 

  • Gírio FM, Roseiro JC, Sá-Machado P, Duarte-Reis AR, Amaral-Collaço MT (1994) Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme Microb Technol 16:1074–1078

    Article  Google Scholar 

  • Gírio FM, Amaro C, Azinheira H, Pelica F, Amaral-Collaço MT (2000) Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresour Technol 71:245–251

    Article  Google Scholar 

  • Gong CS, Chen LF, Tsao GT (1981) Quantitative production of xylitol from d-xylose by a high-xylitol producing yeast mutant Candida tropicalis HXP2. Biotechnol Lett 3:125–130

    Article  CAS  Google Scholar 

  • Granström T, Aristidou AA, Leisola M (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng 4:248–256

    Article  PubMed  CAS  Google Scholar 

  • Hallborn J, Gorwa MF, Meinander NB, Penttilii M, Keriinen S, Hahn-Higerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYLI gene. Appl Microbial Biotechnol 42:326–333

    CAS  Google Scholar 

  • Heikkilä H, Ojamo H, Tylli M, Ravanko V, Nurmi J, Haimi P, Alen R, Koivikko H (2003) Preparation of l-xylose and its use for the production of xylitol. US Patent 2003/0,097,029 A1

    Google Scholar 

  • Hinfray C, Jouenne T, Mignot L, Junter GA (1995) Influence of the oxygenation level on d-xylose fermentation by free and agar-entrapped cultures of Candida shehatae. Appl Microbiol Biotechnol 42:682–687

    Article  CAS  Google Scholar 

  • Hyvonen L, Koivistoinen P, Voirol F (1982) Food technological evaluation of xylitol. Adv Food Res 28:373–403

    Article  CAS  Google Scholar 

  • Ikeuchi T, Azuma M, Kato J, Ooshima H (1999) Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenerg 16:333–339

    Article  CAS  Google Scholar 

  • Ikeuchi T, Kiritani R, Azuma M, Ooshima H (2000) Effect of d-glucose on induction of xylose reductase and xylitol dehydrogenase in Candida tropicalis in the presence of NaCl. J Basic Microbiol 40:167–175

    Article  PubMed  CAS  Google Scholar 

  • Izumori K, Tuzaki K (1988) Production of xylitol from d-xylulose by Mycobacterium smegmatis. J Ferment Technol 66:33–36

    Article  CAS  Google Scholar 

  • Kim SB, Moon NK (2003) Enzymatic digestibility of used newspaper treated with aqueous ammonia-hydrogen peroxide solution. Appl Biochem Biotechnol 105–108:365–373

    Article  PubMed  Google Scholar 

  • Kim TB, Oh DK (2003) Xylitol production by Candida tropicalis in a chemically defined medium. Biotechnol Lett 25(24):2085–2088

    Google Scholar 

  • Kim SY, Oh DK, Kim JH (1999) Evaluation of xylitol production from corn cob hemicellulose hydrolyzate by Candida parapsilosis. Biotechnol Lett 21:891–895

    Article  CAS  Google Scholar 

  • Kim JH, Han KC, Koh YH, Ryu YW, Seo JH (2002) Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J Ind Microbiol Biotechnol 29:16–19

    Article  PubMed  CAS  Google Scholar 

  • Kim TB, Lee YJ, Kim P, Kim CS, Oh DK (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol Lett 26:623–627

    Article  PubMed  CAS  Google Scholar 

  • Kosseva MR, Panesar PS, Kaur G, Kennedy JF (2009) Use of immobilised biocatalysts in the processing of cheese whey. Int J Biol Macromol 45:437–447

    Article  PubMed  CAS  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Atkin AL, Barbosa MFS, Dorscheid DR, Schneider H (1988) Effect of biotin limitation on the conversion of xylose to ethanol and xylitol by Pachysolen tannophilus and Candida guilliermondii. Enzyme Microb Technol 10:81–84

    Article  CAS  Google Scholar 

  • Li M, Meng X, Diao E, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biot 87:387–392

    Article  CAS  Google Scholar 

  • Liaw WC, Chen CS, Chang WS, Chen KP (2008) Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Tsai LB, Gong CS, Tsao GT (1995) Effect of nitrogen sources on xylitol production from d-xylose by Candida sp. l-102. Biotechnol Lett 17:167–170

    Article  CAS  Google Scholar 

  • Mahler GF, Guebel DV (1994) Influence of magnesium concentration on growth, ethanol and xylitol production by Pichia stipitis NRRL Y-7124. Biotechnol Lett 16:407–412

    Article  CAS  Google Scholar 

  • Mäkinen KK (2000) The rocky road of xylitol to its clinical application. J Dent Res 79:1352–1355

    Article  PubMed  Google Scholar 

  • Martínez EA, Silva SS, Almeida e Silva JB, Solenzal AIN, Felipe MGA (2003) The influence of pH and dilution rate on continuous production of xylitol from sugarcane bagasse hemicellulosic hydrolyzate by C. guilliermondii. Proc Biochem 38:1677–1683

    Google Scholar 

  • Meyrial V, Delgenes JP, Moletta R, Navarro JM (1991) Xylitol production from d-xylose by Candida guilliermondii: fermentation behavior. Biotechnol Lett 13:281–286

    Article  CAS  Google Scholar 

  • Mikkola JP, Sjöholm R, Salmi T, Mäki-Arvela P (1999) Xylose hydrogenation: kinetic and NMR studies of the reaction mechanisms. Catal Today 48:73–81

    Article  CAS  Google Scholar 

  • Mikkola JP, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A 196:143–155

    Article  CAS  Google Scholar 

  • Nakano K, Katsu R, Tada K, Matsumura M (2000) Production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control. J Biosci Bioeng 89(4):372–376

    Article  PubMed  CAS  Google Scholar 

  • Nigam P, Singh D (1995) Processes for fermentative production of xylitol-a sugar substitute. Proc Biochem 30:117–124

    CAS  Google Scholar 

  • Nishio N, Sugawa K, Hayase N, Nagai S (1989) Conversion of d-xylose into xylitol by immobilized cells of Candida pelliculosa and Methanobacterium sp. HU. J Ferment Bioeng 67:356–360

    Article  CAS  Google Scholar 

  • Nobre A, Lucas T, Leão C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598

    PubMed  CAS  Google Scholar 

  • Nobre A, Duarte LC, Roseiro JC, Gírio FM (2002) A physiological and enzymatic study of Debaryomyces hansenii growth on xylose- and oxygen-limited chemostats. Appl Microbiol Biotechnol 59:509–516

    Article  PubMed  CAS  Google Scholar 

  • Nolleau V, Preziosi-Belloy L, Navarro JM (1995) The reduction of xylose to xylitol by Candida guilliermondii and Candida parapsilosis: incidence of oxygen and pH. Biotechnol Lett 17:417–422

    Article  CAS  Google Scholar 

  • Oh DK, Kim SY (1997) Xylitol production from xylose by Candida tropicalis DS-72. Korean J Appl Microbiol Biot 25(3):311–316

    CAS  Google Scholar 

  • Oh DK, Kim SY (1998) Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl Microbiol Biotechnol 50:419–425

    Article  PubMed  CAS  Google Scholar 

  • Oh DK, Kim SY, Kim JH (1998) Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol Bioeng 58:438–444

    Article  CAS  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24

    Article  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1998a) Biotechnological production of xylitol. Part 1: interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201

    Article  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1998b) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65:203–212

    Article  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1998c) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolyzates. Bioresour Technol 65:203–212

    Article  Google Scholar 

  • Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 42:98–106

    Google Scholar 

  • Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicellulose hydrolyzate by Pachysolen tannophilus, Candida shehatae and Pichia stipitis. J Ind Microbiol 6:157–164

    Article  CAS  Google Scholar 

  • Pfeifer MJ, Silva SS, Felipe MGA, Roberto IC, Mancilha IM (1996) Effect of culture conditions on xylitol production by Candida guilliermondii FTI 20037. Appl Biochem Biotechnol 57–58:423–430

    Article  PubMed  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128:24–31

    Article  PubMed  CAS  Google Scholar 

  • Preziosi-Belloy L, Nolleau V, Navarro JM (1997) Fermentation of hemicellulosic sugars and sugar mixtures to xylitol by Candida parapsilosis. Enzyme Microb Technol 21:124–129

    Article  CAS  Google Scholar 

  • Preziosi-Belloy L, Nolleau V, Navarro JM (2000) Xylitol production from aspenwood hemicellulose hydrolyzate by Candida guilliermondii. Biotechnol Lett 22:239–243

    Article  CAS  Google Scholar 

  • Rangaswamy S, Agblevor FA (2002) Screening of facultative anaerobic bacteria utilizing d-xylose for xylitol production. Appl Microbiol Biotechnol 60:88–93

    Article  PubMed  CAS  Google Scholar 

  • Rivas B, Torre P, Domínguez JM, Perego P, Converti A, Parajó JC (2003) Carbon material and bioenergetic balances of xylitol production from corncobs by Debaryomyces hansenii. Biotechnol Progr 19:706–713

    Article  CAS  Google Scholar 

  • Roberto IC, Felipe MGA, Lacis LS, Silva SS, de Mancilha IM (1991) Utilization of sugar cane bagasse hemicellulosic hydrolyzate by Candida guilliermondii for xylitol production. Bioresource Technol 36:271–275

    Article  CAS  Google Scholar 

  • Roberto IC, Mancilha IM, Sato S (1999) Influence of kLa on bioconversion of rice straw hemicellulose hydrolyzate to xylitol. Bioproc Eng 21:505–508

    CAS  Google Scholar 

  • Roca E, Meinander N, Hahn-Hägerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiae in a continuous packed-bed bioreactor. Biotechnol Bioeng 51:317–326

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues DCGA, Silva SS, Felipe MGA (1998a) Using response-surface methodology to evaluate xylitol production by Candida guilliermondii by fed-batch process with exponential feeding rate. J Biotechnol 62:73–77

    Article  CAS  Google Scholar 

  • Rodrigues DCGA, Silva SS, Prata AMR, Felipe MDGA (1998b) Biotechnological production of xylitol from agroindustrial residues: evaluation of bioprocesses. Appl Biochem Biotechnol 70–72:869–875

    Article  Google Scholar 

  • Rodrigues DCGA, Da Silva SS, Felipe MGA (1999) Fed-batch culture of Candida guilliermondii FTI 20037 for xylitol production from sugar cane bagasse hydrolysate. Lett Appl Microbiol 29(6):359–363

    Article  CAS  Google Scholar 

  • Rodrigues DCGA, Da Silva SS, Almeida E, Silva JB, Vitolo M (2002) Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables. Appl Biochem Biotechnol 98–100:875–883

    Article  PubMed  Google Scholar 

  • Roseiro JC, Peito MA, Gírio FM, Amaral-Collaço MT (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–490

    CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microb Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Saha BC, Bothast RJ (1999) Production of xylitol by Candida peltata. J Ind Microbiol Biotechnol 22:633–636

    Article  PubMed  CAS  Google Scholar 

  • Sampaio F, Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Braz J Microbiol 34:325–328

    Article  Google Scholar 

  • Sampaio FC, Torre P, Passos FML, Perego P, Passos FJV, Converti A (2004) Xylose metabolism in Debaryomyces hansenii UFV-170. Effect of the specific oxygen uptake rate. Biotechnol Progr 20:1641–1650

    Article  CAS  Google Scholar 

  • Sampaio FC, Mantovani HC, Passos FJV, Moraes CA, Converti A, Passos FML (2005) Bioconversion of d-xylose to xylitol by Debaryomyces hansenii UFV-170: product formation versus growth. Proc Biochem 40:3600–3606

    Article  CAS  Google Scholar 

  • Sampaio FC, Moraes CA, De Faveri D, Perego P, Converti A, Passos FML (2006) Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Proc Biochem 41:675–681

    Article  CAS  Google Scholar 

  • Sampaio FC, Chaves-Alves VM, Converti A, Passos FML, Coelho JLC (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Biores Technol 99:202–208

    Article  CAS  Google Scholar 

  • Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (1998) The production of xylitol from d-xylose by fermentation with Hansenula polymorpha. Appl Microbiol Biotechnol 50:608–611

    Article  Google Scholar 

  • Santos JC, Carvalho W, Silva SS, Converti A (2003) Xylitol production from sugarcane bagasse hydrolyzate in fluidized bed reactor. Effect of air flowrate. Biotechnol Progr 19:1210–1215

    Article  CAS  Google Scholar 

  • Santos JC, Mussatto SI, Silva SS, Carvalho W, Cunha MAA (2005a) Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World J Microbiol Biotechnol 21:531–535

    Article  CAS  Google Scholar 

  • Santos JC, Converti A, De Carvalho W, Mussate SI, Da Silva SS (2005b) Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized cell fluidized bed reactor. Process Biochem 40:113–118

    Article  CAS  Google Scholar 

  • Santos JC, Mussatto SI, Cunha MAA, Silva SS (2005c) Variables that affect xylitol production from sugarcane bagasse hydrolyzate in a zeolite fluidized bed reactor. Biotechnol Progr 21(6):1639–1643

    Article  CAS  Google Scholar 

  • Sarrouh BF, Da Silva SS (2008) Evaluation of the performance of a three phase fluidized bed reactor with immobilized yeast cells for the biotechnological production of xylitol. Int J Chemical Reactor Eng 6:A75

    Google Scholar 

  • Sarrouh BF, Santos DT, Silva SS (2007) Biotechnological production of xylitol in a three-phase fluidized bed bioreactor with immobilized yeast cells in Ca-alginate beads. Biotechnol J 2:759–763

    Article  CAS  Google Scholar 

  • Sene L, Felipe MGA, Vitolo M, Silva SS, Mancilha IM (1998) Adaptation and reutilization of Candida guilliermondii cells for xylitol production in bagasse hydrolyzate. J Basic Microb 38:61–69

    Article  CAS  Google Scholar 

  • Sene L, Converti A, Zilli M, Felipe MGA, Silva SS (2001) Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolyzate. Appl Microbiol Biotechnol 57:738–743

    Article  PubMed  CAS  Google Scholar 

  • Sheu DC, Duan KJ, Jou SR, Chen YC, Chen CW (2004) Production of xylitol from Candida tropicalis by using an oxidation-reduction potential-stat controlled fermentation. Biotechnol Lett 26:369–375

    Article  CAS  Google Scholar 

  • Silva SS, Afschar AS (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Bioproc Eng 11:129–134

    Article  Google Scholar 

  • Silva CJSM, Roberto IC (2001) Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Proc Biochem 36:1119–1124

    Article  CAS  Google Scholar 

  • Silva SS, Roberto IC, Felipe MGA, Mancilha IM (1996a) Batch fermentation of xylose for xylitol production in stirred-tank bioreactor. Proc Biochem 31:549–553

    Article  CAS  Google Scholar 

  • Silva SS, Vitolo M, Pessoa A Jr, Felipe MGA (1996b) Xylose reductase and xylitol dehydrogenase activities of d-xylose-xylitol-fermenting Candida guilliermondii. J Basic Microbiol 36:187–191

    Google Scholar 

  • Silva SS, Chanto AQ, Vitolo M, Felipe MGA, Mancilha IM (1999) A preliminary information about continuous fermentation using cell recycling for improving microbial xylitol production rates. Appl Biochem Biotechnol 77–79:571–575

    Article  PubMed  Google Scholar 

  • Silva SS, Santos JC, Carvalho W, Aracava KK, Vitolo M (2003) Use of a fluidized bed reactor operated in semi-continuous mode for xylose-to-xylitol conversion by Candida guilliermondii immobilized on porous glass. Proc Biochem 38:903–907

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferment Bioeng 80:565–570

    Article  CAS  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1988) Xylose fermentation. Enzyme Microb Technol 10:66–79

    Article  CAS  Google Scholar 

  • Suihko ML (1984) d-xylose Fermentation by Fusarium oxysporum and other fungi. PhD Thesis, University of Helsinki

    Google Scholar 

  • Tamburini E, Bernardi T, Bianchini E, Pedrini P (2008) Xylitol production from d-xylose by a hyperacidophilic Candida tropicalis. J Biotechnol 136:292–293

    Article  Google Scholar 

  • Tavares JM, Duarte LC, Amaral-Collaço MT, Gírio FM (1999) Phosphate limitation stress induces xylitol overproduction by Debaryomyces hansenii. FEMS Microbiol Lett 171:115–120

    Article  CAS  Google Scholar 

  • Tavares JM, Duarte LC, Amaral-Collaço MT, Gírio FM (2000) The influence of hexoses addition on the fermentation of d-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme Microb Technol 26:743–747

    Article  PubMed  CAS  Google Scholar 

  • Thonart P, Gómez Guerreiro J, Foucart M, Paquot M (1987) Bioconversion of xylose into xylitol by Pachysolen tannophilus. Mededelingen van de Faculteit Landbouwwetenschappen 52:1517–1528

    Google Scholar 

  • Tran LH, Yogo M, Ojima H, Idota O, Kawai K, Suzuki T, Takamizawa K (2004) The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol Bioproc Eng 9:223–228

    Article  CAS  Google Scholar 

  • van Zyl WH, Eliasson A, Hobley T, Hahn-Hägerdal B (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833

    Article  PubMed  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries T (1995a) Effects of environmental conditions on production of xylitol by Candida boidinii. World J Microbiol Biotechnol 11:213–218

    Article  CAS  Google Scholar 

  • Vandeska E, Kuzmanova S, Jeffries TW (1995b) Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng 80:513–516

    Article  CAS  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Proc Biochem 31:265–270

    Article  CAS  Google Scholar 

  • Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulosic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76:213–220

    Article  PubMed  CAS  Google Scholar 

  • Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 86:1–14

    Article  CAS  Google Scholar 

  • Winkelhausen E, Pittman P, Kuzmanova S, Jefferies TW (1996) Xylitol formation by Candida boidinii in oxygen-limited chemostat culture. Biotechnol Lett 18:753–758

    Article  CAS  Google Scholar 

  • Winkelhausen E, Amartey SA, Kuzmanova S (2004) Xylitol production from d-xylose at different oxygen transfer coefficients in a batch bioreactor. Eng Life Sci 4:150–154

    Article  CAS  Google Scholar 

  • Winkelhausen E, Jovanovic-Malinovska R, Kuzmanova S, Cvetkovska M, Tsvetanov C (2008) Hydrogels based on u.v.-crosslinked poly(ethylene oxide)—matrices for immobilization of Candida boidinii cells for xylitol production. World J Microbiol Biotechnol 24:2035–2043

    Article  CAS  Google Scholar 

  • Yahashi Y, Hatsu M, Horitsu H, Kawai K, Suzuki T, Takamizawa K (1996) d-glucose feeding for improvement of xylitol productivity from d-xylose using Candida tropicalis immobilized on a non-woven fabric. Biotechnol Lett 18(12):1395–1400

    Article  CAS  Google Scholar 

  • Yoshitake J, Shimamura M, Imai T (1973) Production of polyalcohols by a Corynebacterium species. II. Xylitol production by a Corynebacterium species. Agric Biol Chem 37:2251–2259

    Article  CAS  Google Scholar 

  • Yoshitake J, Shimamura M, Ishizaki H, Irie Y (1976) Xylitol production by Enterobacter liquefaciens. Agric Biol Chem 40:1493–1503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Salgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salgado, J.M., Converti, A., Domínguez, J.M. (2012). Fermentation Strategies Explored for Xylitol Production. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_7

Download citation

Publish with us

Policies and ethics