Skip to main content

Detoxification Strategies Applied to Lignocellulosic Hydrolysates for Improved Xylitol Production

  • Chapter
  • First Online:
Book cover D-Xylitol

Abstract

Hemicellulose is the second most abundant renewable biomass after cellulose on the planet. It is one of the three heterogenous polymers, derived from lignocellulose biomass which yields individual sugars, mainly xylose after dilute acid or hydrothermal pretreatment. Among the microbial co-products generated from hemicellulose sugars, xylitol is the most abundant and holds the most valued potential in numerous medical and non-medical applications. During the hemicellulose hydrolysis, in addition to the production of sugars, a number of plant cell wall derived inhibitors are generated as byproducts of the process. It is essential to apply a detoxification strategy to remove the toxic inhibitors from hemicellulosic hydrolysates. This allows for a satisfactory xylitol yield and productive microbial fermentation. During detoxification, several methods such as calcium hydroxide overliming, activated charcoal, and ion-exchange are routinely used to overcome the inhibitors. More recently, biological applications (laccase, direct implication of microorganisms having the affinity towards inhibitors) and systems biology-based approaches have gained significant attraction for the development of microbial traits to counteract the effects of inhibitors while simultaneously fermenting the xylose sugar solution into xylitol. This chapter aims to discuss the various strategies used in the detoxification of lignocellulose hydrolysates for the fermentative production of xylitol. Particular emphasis is placed on the biological applications used for clarification of hemicellulosic syrups with future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida JRM, Modig T, Röder A, Lidén G, Gorwa-Grauslund MF (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol Biofuels 1:12

    Article  PubMed  Google Scholar 

  • Alriksson B, Horvath IS, Sjöde A, Nilvebrant N-O, Jönsson LJ (2005) Ammonium hydroxide detoxification of Spruce acid hydrolysates. Appl Biochem Biotechnol Symp (Session) 6A:911–922

    Article  Google Scholar 

  • Alriksson B, Cavka A, Johnson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in situ detoxification with reducing agents. Bioresour Technol 102:1254–1263

    Article  PubMed  CAS  Google Scholar 

  • Baek S-C, Kwon Y-J (2007) Optimization of the pretreatment of rice straw hemicellulosic hydrolyzates for microbial production of xylitol. Biotechnol Bioprocess Eng 12:404–409

    Article  CAS  Google Scholar 

  • Bajwa PK, Phaenark C, Grant N, Zhang X, Paice M, Martin VJJ, Trevors JT, Lee H (2011) Ethanol production from selected lignocellulosic hydrolysates by genome shuffled strains of Scheffersomyces stipitis. Bioresour Technol. doi:10.1016/j.biotech.2011.08.027

    PubMed  Google Scholar 

  • Balan V, Sousa LC, Chundawat SPS, Mashall D (2009) Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods. Biotechnol Prog 12:404–409

    Google Scholar 

  • Björklund L, Larsson S, Jönsson LJ, Reimann A, Nivebrant NO (2002) Treatment with lignin residue: a novel method for detoxification of lignocellulose hydrolysates. Appl Biochem Biotechnol 98–100:563–575

    Article  PubMed  Google Scholar 

  • Buhner J, Agblevor FA (2004) Effect of detoxification of dilute-acid corn fiber hydrolysate on xylitol production. Appl Biochem Biotech 119:13–30

    Article  CAS  Google Scholar 

  • Canilha L, Carvalho W, Felipe MGA, Silva JBA (2008) Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian J Microbiol 39:333–336

    Article  Google Scholar 

  • Cao G, Ren N, Wang A, Lee DJ, Guo W, Liu B, Feng Y, Zhao Q (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int J Hyd Ener 34:7182–7188

    Article  CAS  Google Scholar 

  • Carvalheiro F, Duarte LC, Lopes S, Parajo JC, Pereira H, Girio FM (2006) Supplementation requirements of brewery’s spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. J Ind Microbiol Biotechnol 33:646–654

    Article  PubMed  CAS  Google Scholar 

  • Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales ML, Solenzal AIN (2004) Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. J Chem Technol Biotechnol 79:863–868

    Article  Google Scholar 

  • Carvalho GB, Mussatto SI, Cândido EJ, Silva JBA (2006) Comparison of different procedures for the detoxification of Eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157

    Article  CAS  Google Scholar 

  • Cavka A, Alriksson B, Ahnlund M, Jönsson LJ (2011) Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnol Bioeng 108:2592–2599

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, ISBN 978-90-481-3294-2, Netherland, pp 63–81

    Google Scholar 

  • Chandel AK, Silva SS, Singh OV (2011a) Detoxification of lignocellulosic hydrolysates for improved bioconversion of bioethanol. In: Bernardes MAS (ed) Biofuel production: recent developments and prospects. InTech, Rijeka

    Google Scholar 

  • Chandel AK, Singh OV, Narasu ML, Rao LV (2011b) Bioconversion of Saccharum spontaneum (wild sugarcane) hemicellulosic hydrolysate into ethanol by mono and co-cultures of Pichia stipitis NCIM3498 and thermotolerant Saccharomyces cerevisiae VS3. New Biotechnol 28:593–599

    Article  CAS  Google Scholar 

  • Chen X, Jiang Z, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  PubMed  CAS  Google Scholar 

  • Cheng K, Zhang J, Ling H, Ping W, Huang W (2008) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis W103. Biochem Eng J 34:203–207

    Google Scholar 

  • Cheng H, Wang BL, Jiang M, Lin S, Deng Z (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltose. Microb Cell Fact 10:5

    Article  PubMed  CAS  Google Scholar 

  • Cho DH, Lee YJ, Um Y, Sang BI, Kim YH (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl Microbiol Biotechnol 3:1035–1043

    Article  Google Scholar 

  • Converti A, Perego P, Dominguez JM (1999) Xylitol production from hardwood hemicellulose hydrolysates by P. tannophilus, D. hansenii and C. guilliermondii. Appl Biotechnol Biochem 82:141–151

    Article  CAS  Google Scholar 

  • Converti A, Dominguez JM, Perego P, Silva SS, Zilli M (2000) Wood Hydrolysis and hydrolysate detoxification of subsequent xylitol production. Chem Eng Technol 23:1013–1019

    Article  CAS  Google Scholar 

  • Dehkhoda A, Brandberg T, Taherzadeh MJ (2008) Comparison of vacuum and high pressure evaporated wood hydrolysare for ethanol production by repeated fed-batch using flocculating Saccharomyces cerevisiae. BioRes 4:309–320

    Google Scholar 

  • Fang X, Shen Y, Bao B, Qu Y (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819

    Article  PubMed  CAS  Google Scholar 

  • Griffin GJ, Shu L (2004) Solvent extraction and purification of sugars from hemicelluloses hydroslysates using boronic acid carriers. J Chem Technol Biotechnol 79:505–511

    Article  CAS  Google Scholar 

  • Grzenia D, Schell DJ, Wickramasinghe SR (2010) Detoxification of biomass hydrolysates by reactive membrane extraction. J Membr Sci 348:6–12

    Article  CAS  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Huang CF, Jiang Y, Guo G, Hwang W (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  PubMed  CAS  Google Scholar 

  • Jonsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hagerdal B (1998) Detoxification of wood hydrolysate with laccase and peroxidase from the white-rot fungus T. versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  CAS  Google Scholar 

  • Kolb M, Sieber V, Amann M, Faulstich M, Scheieder D (2012) Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol 104:298–304

    Article  PubMed  CAS  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    Article  PubMed  CAS  Google Scholar 

  • Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559

    Article  PubMed  Google Scholar 

  • Liu ZL (2011) Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 90:809–825

    Article  PubMed  CAS  Google Scholar 

  • Maddox IS, Murray AE (1983) Production of n-butanol by fermentation of wood hydrolysate. Biotechnol Lett 5:175–178

    Article  CAS  Google Scholar 

  • Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Johnsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 31:274–282

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69:526–536

    Article  PubMed  CAS  Google Scholar 

  • Marton JM, Felipe MGA, Silva JBA, Pessoa A Jr (2006) Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Braz J Chem Eng 23:9–21

    Article  CAS  Google Scholar 

  • Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 2:26

    Article  PubMed  Google Scholar 

  • Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R (2003) Detoxification of wood hydrolysates by wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Technol 32:396–400

    Article  CAS  Google Scholar 

  • Moreno AD, Ibarra D, Fernandez JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Roberto SI (2004) Alternative for detoxification of dilution-acid lignocelluosic hydolyzates for use in fermentative process: a review. Bioresour Technol 93:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Santos JC, Roberto IC (2004) Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:590–596

    Article  CAS  Google Scholar 

  • Nilvebrant N-O, Reimann A, Larsson S, Jönsson LJ (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91(93):35–49

    Article  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000a) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification: review. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000b) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition: review. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Parajo JC, Dominguez H, Dominguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolyzates. Enzyme Microb Technol 21:18–24

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  PubMed  CAS  Google Scholar 

  • Persson P, Andersson J, Gorton L, Larsson S, Nilvebrant N-O, Jönsson LJ (2002) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agr Food Chem 50:5318–5325

    Article  CAS  Google Scholar 

  • Prakasham RS, Rao RS, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotechnol Phar 3:8–36

    CAS  Google Scholar 

  • Qi B, Luo J, Chen X, Hang X, Wan Y (2011) Separation of furfural from monosaccharides by nanofiltration. Bioresour Technol 14:7111–7118

    Article  Google Scholar 

  • Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283

    Article  PubMed  CAS  Google Scholar 

  • Ranjan R, Thust S, Gounaris CE, Woo M, Floudas CA, Keitz M, Valentas KJ, Wei J, Tsapatsis M (2009) Adsorption of fermentation inhibitors from lignocellulosic biomass hydrolysates for improved ethanol yield and value added product recovery. Microp Mesop Mat 122:143–148

    Article  CAS  Google Scholar 

  • Rodrigues RCLB, Felipe MGA, Silva JBA, Vitolo M, Villa PV (2001) The influence of pH, temperature and hydrolysate concentration on the removal of volatile and non-volatile compounds from sugarcane bagasse hemicellulosic hydrolysate treated with activated charcoal before or after vacuum evaporation. Braz J Chem Eng 18:299–311

    Article  CAS  Google Scholar 

  • Sampaio FC, Silveira WB, Chaves-Alves VM, Passos FML, Coelho JLC (2003) Screening of filamentous fungi for production of xylitol from d-xylose. Braz J Microbiol 34:321–324

    Article  Google Scholar 

  • Sene L, Arruda PV, Oliveira SMM, Felipe MGA (2011) Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Braz J Microbiol 42:3

    Article  Google Scholar 

  • Silva CJSM, Roberto IC (2001) Improvement of xylitol production by Candida guilliermondii FTI 20037 previously adapted to rice straw hemicellulosic hydrolysate. Appl Microbiol 32:248–252

    Article  CAS  Google Scholar 

  • Stoutenburg RM, Perrotta JA, Amidon TE, Nakas JP (2008) Ethanol production from a membrane purified hemicellulosic hydrolysate derived from sugar maple by Pichia stipitis NRRL Y-7124. Bioresources 3:4

    Google Scholar 

  • Telli-Okur M, Eken-Saraçoğlu N (2008) Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 99:2162–2169

    Article  PubMed  CAS  Google Scholar 

  • Tran AV, Chambers RP (1986) Ethanol fermentation of red oak prehydrolysate by the yeast Pichia stipitis CBS 5776. Enzyme Microb Technol 8:439–444

    Article  CAS  Google Scholar 

  • Vieira CD, Roberto IC (2010) Improved xylitol production in media containing phenolic aldehydes: application of response surface methodology for optimization and modeling of bioprocess. J Chem Technol Biotechnol 85:1097–4660

    Google Scholar 

  • Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24

    Article  CAS  Google Scholar 

  • Wang B, Feng H (2010) Detoxification of lignocellulosic hydrolysates. In: Blaschek HP, Ezeji TC, Scheffran J (eds) Biofuels from agricultural wastes and by-products. Wiley-Blackwell, Oxford. doi:10.1002/9780813822716.ch11

  • Watanabe T, Watanabe I, Yamamoto MI, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102:1844–1848

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe SR, Grzenia D (2008) Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates. Desalination 234:144–151

    Article  CAS  Google Scholar 

  • Wilson JJ, Deschatelets L, Nishikawa NK (1989) Comparative fermentability of enzymatic and acid hydrolysates of steam pretreated aspen wood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol 31:592–596

    Article  CAS  Google Scholar 

  • Zautsen RRM, Maugeri-Filho F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM (2009) Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate. Biotechnol Bioeng 102:1354–1360

    Article  PubMed  CAS  Google Scholar 

  • Zhu JJ, Yong Q, Xu Y, Yu SY (2009) Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate. Proceedings of the 2009 international conference on energy and environmental technology, vol 3, pp 240–243

    Google Scholar 

  • Zhuang J, Li L, Pang C (2012) Detoxification of wheat straw formic acid hydrolysis and xylitol production. Adv Mat Res 383–390:5453–5457

    Google Scholar 

Download references

Acknowledgement

AKC and SSS are grateful to Bioen-FAPESP and CNPq for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om V. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mpabanga, T.P., Chandel, A.K., da Silva, S.S., Singh, O.V. (2012). Detoxification Strategies Applied to Lignocellulosic Hydrolysates for Improved Xylitol Production. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_3

Download citation

Publish with us

Policies and ethics