Skip to main content

Overview on Commercial Production of Xylitol, Economic Analysis and Market Trends

  • Chapter
  • First Online:
D-Xylitol

Abstract

The interest in xylitol has increased considerably in recent years, due to many commercial applications in different industrial sectors like food, dental related products, and pharmaceuticals. As industrial biotechnological routes to xylitol are costly they currently represents a small fraction of the marketshare. Therefore, over the past few decades much effort has been devoted to the development of cost-effective and environmentally-friendly biotechnological processes by evaluating cheaper lignocellulosic substrates. In this chapter, xylitol commercial processes, cost and market trends are discussed with a special focus on biorefining and biotechnological methods. Increasing commercial and scientific interest in xylitol has led to a strong demand for this product in the global market, of more than 125,000 tons per anum, with a value that is relatively high (4.5–5.5$/kg for bulk purchase by pharma/chewing gum companies and 12£ or 20$/kg in supermarkets) makes its an attractive proposition for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adapa P, Tabil L, Schoenau G (2009) Compaction characteristics of barley, canola, oat and wheat straw. Biosys Eng 104:335–344

    Article  Google Scholar 

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory technical report TP-510-32438

    Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future—biorefinery production of chemicals from renewable carbon. Clean 36:641–647

    CAS  Google Scholar 

  • Charlton A, Elias R, Fish S, Fowler P, Gallagher J (2009) The biorefining opportunities in Wales: understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem Eng Res Des 87:1147–1161

    Article  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Chavez E, Li JP (2010) Integrated production of xylitol and ethanol using corncob. Appl Micro Biotech 87:411–417

    Article  CAS  Google Scholar 

  • Clark JH, Deswarte FEI, Farmer TJ (2009) The integration of green chemistry into future biorefineries. Biofuels Bioprod Bioref 3:72–90

    Article  CAS  Google Scholar 

  • Dahiya JS (1991) Xylitol production by Petromyces albertensis grown on medium containing d-xylose. Can J Microbiol 37:14–18

    Article  CAS  Google Scholar 

  • Dumon C, Song L, Bozonnet S, Fauré R, O’Donohue MJ (2011) Progress and future prospects for pentose-specific biocatalysts in biorefining. Process Biochem 47:346–357

    Article  Google Scholar 

  • Emodi A (1978) Xylitol: its properties and food applications. Food Technol 32:20–32

    Google Scholar 

  • Faveri DD, Perego P, Converti A, Del Borghi M (2002) Xylitol recovery by crystallization from synthetic solutions and fermented hemicellulose hydrolyzates. Chemical Eng J 90:291–298

    Article  Google Scholar 

  • Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Biores Technol 101:8915–8922

    Article  CAS  Google Scholar 

  • Franceschin G, Sudiro M, Ingram T, Smirnova I, Brunner G, Bertucco A (2011) Conversion of rye straw into fuel and xylitol: a technical and economical assessment based on experimental data. Chem Eng Res Des 89:631–640

    Article  CAS  Google Scholar 

  • Gardonyi M, Sterberg MO, Rodrigues C, Spencer-Martins I, Hahn-Hagerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52

    Article  PubMed  CAS  Google Scholar 

  • Garleb KA, Bourquin LD, Hsu JT, Wagner GW, Schmidt SJ, Fahey GC Jr (1991) Isolation and chemical analyses of nonfermented fiber fractions of oat hulls and cottonseed hulls. J Anim Sci 69:1255–1271

    PubMed  CAS  Google Scholar 

  • Gong CS, Chen LF, Tsao GT (1981) Quantitative production of xylitol from D xylose by a high xylitol producing yeast mutant Candida tropicalis HXP2. Biotechnol Lett 3(130):135

    Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part I: the biochemistry and biosynthesis of xylitol. Appl Microbiol Biotech 74:277–281

    Article  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104

    Article  PubMed  CAS  Google Scholar 

  • Hiroshi O, Toshiyuki S (1966) The production of xylitol, l-arabitol and ribitol by yeasts. Agri Biol Chem 30:1139–1144

    Article  Google Scholar 

  • Hyvonen L, Koivistoinen P, Voirol F (1982) Food technological evaluation of xylitol. In: Chichester CO, Mrak EM, Stewart G (eds) Advances in food research, vol 28. Academic Press, New York, pp 373–403

    Google Scholar 

  • Ingarm T, Rogalinski T, Bockemuhl V, Antranikian G, Brunner G (2009) Semi-continuous liquid hot water pre-treatment of rye straw for bioethanol production. J Supercrit Fluids 48:238–246

    Article  Google Scholar 

  • Ingram T, Wörmeyer K, Ju Ixcaraguá Lima JC, Bockemühl V, Antranikian G, Brunner G, Smirnova I (2011) Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. Biores Technol 102:5221–5228

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134

    Article  Google Scholar 

  • Kazi FK, Fortman JA, Anex RP, Hsu DD, Aden A, Dutta A, Kothandaraman G (2010) Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel 89:S20–S28

    Article  CAS  Google Scholar 

  • Kim S-Y, Kim JH, Oh DK (1997) Improvement of xylitol production by controlling oxygen supply in Candida parapsilosis. J Ferm Bioeng 83:267–270

    Article  CAS  Google Scholar 

  • Kocoloski M, Michael Griffin W, Scott Matthews H (2011) Impacts of facility size and location decisions on ethanol production cost. Energy Policy 39:47–56

    Article  Google Scholar 

  • Koutinas AA, Wang RH, Webb C (2007) The biochemurgist—bioconversion of agricultural raw materials for chemical production. Biofuels Bioprod Bioref 1:24–38

    Article  CAS  Google Scholar 

  • Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioprod Bioref 1:39–48

    Article  CAS  Google Scholar 

  • Leathers TD, Gupta SC (1997) Xylitol and riboflavin accumulation in xylose-grown cultures of Pichia guilliermondii. Appl Microbiol Biotech 47:58–61

    Article  CAS  Google Scholar 

  • Makinen KK (2000) The rocky road of xylitol to its clinical application. J Den Res 79:1352–1355

    Article  CAS  Google Scholar 

  • Martınez EA, Silva JB, Giulietti M, Napoles Solenzal AI (2007) Downstream process for xylitol produced from fermented hydrolysate. Enz Microbial Technol 40:1193–1198

    Article  Google Scholar 

  • Misra S, Gupta P, Raghuwanshi S, Dutt K, Saxena RK (2011) Comparative study on different strategies involved for xylitol purification from culture media fermented by Candida tropicalis. Sep Purif Technol 78:266–273

    Article  CAS  Google Scholar 

  • Ojamo H (1994) Yeast xylose metabolism and xylitol production. PhD Thesis. Helsinki University of Technology, Espoo, Finland

    Google Scholar 

  • Prakasham RS, Sreenivas Rao R, Hobbs PJ (2009) Current trends in biotechnological production of xylitol and future prospects. Curr Trends Biotech Pharm 3:8–36

    CAS  Google Scholar 

  • Russo JR (1977) Xylitol: anti-caries sweetener? Food Eng 79:37–40

    Google Scholar 

  • Saha BC, Bothast RJ (1997) Microbial production of xylitol. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 307–319

    Chapter  Google Scholar 

  • Sampaio FC, Lopes Passos FM, Vieira Passos FJ, De Faveri D, Perego P, Converti A (2006) Xylitol crystallization from culture media fermented by yeasts. Chem Eng Proc 45:1041–1046

    Article  CAS  Google Scholar 

  • Sampaio FC, Chaves-Alves VM, Converti A, Passos FM, Coelho JLC (2008) Influence of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hanseni. Biores Technol 99:502–508

    Article  CAS  Google Scholar 

  • Sánchez S, Bravo V, Moya AJ, Castro E, Camacho F (2004) Influence of temperature on the fermentation of d-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Process Biochem 39:673–679

    Article  Google Scholar 

  • Silva CJSM, Mussatto SI, Roberto IC (2006) Study of xylitol production by Candida guilliermondii on a bench bioreactor. J Food Eng 75:115–119

    Article  CAS  Google Scholar 

  • Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from d-xylose. J Ferm Bioeng 80:565–570

    Article  CAS  Google Scholar 

  • Sreenivas Rao R, Prakasham RS, Krishna Prasad K, Rajesham S, Sharma PN, Rao LV (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem 39:951–956

    Article  Google Scholar 

  • Sreenivas Rao R, Jyothi CP, Prakasham RS, Rao CS, Sarma PN, Rao LV (2006a) Strain improvement of Candida tropicalis for the production of xylitol: biochemical and physiological characterization of wild-type and mutant strain CT-OMV5. J Microbiol 44:113–120

    Google Scholar 

  • Sreenivas Rao R, Jyothi CP, Prakasham RS, Rao CS, Sarma PN, Rao LV (2006b) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Biores Technol 97:1974–1978

    Article  Google Scholar 

  • Sreenivas Rao R, Bhadra B, Shivaji S (2007a) Isolation and characterization of xylitol-producing yeasts from the gut of colleopteran insects. Curr Microbiol 55:441–446

    Article  PubMed  Google Scholar 

  • Sreenivas Rao R, Prakasham RS, Piilai B, Pillai D, Venkateswar Rao L (2007b) Cloning and expression of XYL1 gene encoding for d-xylose reductase in Saccharomyces cerevisiae. Proc Andhra Pradesh Acad Sci 10:91–99

    Google Scholar 

  • Suryadi H, Katsuragi T, Yoshida N, Suzuki S, Tani Y (2000) Polyol production by culture of methanol utilizing yeast. J Biosci Bioeng 89:236–240

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Yang M, Fan X, Zhu X, Xu T, Yuan Q (2011) An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem 46:1619–1626

    Article  CAS  Google Scholar 

  • West TP (2009) Xylitol production by Candida species grown on a grass hydrolysate. World J Microbiol Biotech 25:913–916

    Article  CAS  Google Scholar 

  • Wright MM, Brown RC (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels Bioprod Bioref 1:49–56

    Article  CAS  Google Scholar 

  • Yablochkova EN, Bolotnikova OI, Mikhailova NP, Nemova NN, Ginak AI (2003) The activity of xylose reductase and xylitol dehydrogenase in yeasts. Microbiology 72:414–417

    Article  CAS  Google Scholar 

  • Yang S-T (2007) Bioprocessing—from biotechnology to biorefinery. In: Yang S-T (ed) Bioprocessing for value-added products from renewable resources. Elsevier B.V., Oxford

    Google Scholar 

  • Yilikari R (1979) Metabolic and nutritional aspects of xylitol. In: Chichester CO, Mrak EM, Stewart G (eds) Advances in food research, vol 25. Academic Press, New York, pp 159–180

    Google Scholar 

  • Yoshitake J, Ohiwa H, Shimamura M, Imai T (1971) Production of polyalcohol by a Cornynebacterium species. Part 1. Production of pentitol from aldopentose. Agric Boil Chem 35:905–911

    Article  CAS  Google Scholar 

  • Yoshitake J, Ishizaki H, Shimamura M, Imai T (1973) Xylitol production by an Enterobacter species. Agric Biol Chem 37:2261–2267

    Article  CAS  Google Scholar 

  • Yoshitake J, Shimamura M, Ishizaki H, Irie Y (1976) Xylitol production by an Enterobacter liquefaciens. Agric Biol Chem 40:1493–1503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sreenivas gratefully acknowledges funding support from the European Regional Development Fund and Welsh Government through the BEACON project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivas Rao Ravella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ravella, S.R., Gallagher, J., Fish, S., Prakasham, R.S. (2012). Overview on Commercial Production of Xylitol, Economic Analysis and Market Trends. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_13

Download citation

Publish with us

Policies and ethics