Skip to main content
Book cover

D-Xylitol pp 267–289Cite as

Key Drivers Influencing the Large Scale Production of Xylitol

  • Chapter
  • First Online:

Abstract

The technologies related to xylitol production by fermentation have progressed significantly and become industrialized. To further increase the market competitiveness of fermentative xylitol production on a commercial scale, it is necessary to ascertain the main links affecting the production cost, and accurately formulate the effective strategy to reduce the xylitol production costs. From the aspect of xylitol commercial production, this paper focuses on analyzing the main steps influencing the production costs of fermentative xylitol mass production, and the comparative advantages of the fermentation process are also discussed. Some important sectors, which influence the cost of xylitol fermentation production on a massive scale, are further illustrated. It mainly includes the applicability assessment of raw materials, integration of products purification technologies, etc. Basing on this, the suggestions on how to use the comparative advantages of xylitol fermentation process to establish a highly commercially viable processing strategy are made, and some opinions on how to integrate the xylitol manufacturing unit with the biorefinery are added.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Branco RF, Santos JC, Silva SS (2011) A novel use for sugarcane bagasse hemicellulosic fraction: xylitol enzymatic production. Biomass Bioener 35:3241–3246

    Article  CAS  Google Scholar 

  • Bustos G, Ramírez JA, Garrote G et al (2003) Modeling of the hydrolysis of sugar cane bagasse with hydrochloric acid. Appl Biochem Biotech 104:51–68

    Article  CAS  Google Scholar 

  • Duarte LC, Carvalheiro F, Tadeu J et al (2006) The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. Appl Biochem Biotech 129–132:461–475

    Article  Google Scholar 

  • Fonseca BG, Moutta RO, Ferraz FO (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol 38(1):199–207

    Article  PubMed  CAS  Google Scholar 

  • Huang CF, Jiang YF, Guo GL et al (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329

    Article  PubMed  CAS  Google Scholar 

  • Jeon YJ, Shin HS, Rogers PL (2011) Xylitol production from a mutant strain of Candida tropicalis. Lett Appl Microbiol 53:106–113

    Article  PubMed  CAS  Google Scholar 

  • Jin S-R (2008) Production technology and application of sugar alcohol (in Chinese). China Light Industry Press, Beijing

    Google Scholar 

  • Kim TB, Lee YJ, Kim P et al (2004) Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol Lett 26:623–627

    Article  PubMed  CAS  Google Scholar 

  • Ko BS, Kim DM, Yoon BH et al (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosc Bioeng 101(1):13–18

    Article  CAS  Google Scholar 

  • Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioener 23:367–380

    Article  CAS  Google Scholar 

  • Lee JW, Zhu JY, Scordia D et al (2011) Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up. Appl Biochem Biotechnol 165:814–822. doi:10.1007/s12010-011-9299-7

    Article  PubMed  CAS  Google Scholar 

  • López F, Delgado OD, Martínez MA et al (2004) Characterization of a new xylitol-producer Candida tropicalis strain. Ant van Leeuwenhoek 85:281–286

    Article  Google Scholar 

  • Luo C, Brink DL, Blanch HW (2002) Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol. Biomass Bioener 22:125–138

    Article  CAS  Google Scholar 

  • Martinez A, Rodriguez M, York SW et al (2000) Effects of Ca(OH)2 treatments (overliming) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotech Bioeng 69(5):526–535

    Article  CAS  Google Scholar 

  • Mikkola JP, Salmi T (2001) Three-phase catalytic hydrogenation of xylose to xylitol prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal Today 64:271–277

    Article  CAS  Google Scholar 

  • Mikkola JP, Vainio H, Salmi T et al (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155

    Article  CAS  Google Scholar 

  • Murzin DY, Mäki-Arvela P, Salmi T et al (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666

    Article  PubMed  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Roberto IC (2005) Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Proc Biochem 40:3801–3806

    Article  CAS  Google Scholar 

  • Mussatto SI, Silva CJSM, Roberto IC (2006) Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Appl Microbiol Biotechnol 72:681–686

    Article  PubMed  CAS  Google Scholar 

  • Oliva JM, Ballesteros I, Negro MJ et al (2004) Effect of binary combinations of selected toxic compounds on growth and fermentation of Kluyveromyces marxianus. Biotechnol Prog 20:715–720

    Article  PubMed  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerbal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Ooi BG, Le TTB, Markuszewski BM (2002) Tthe effects of glucose on the yeast conversion of xylose into xylitol by Candida guilliermondii and Candida tropicalis. EJEAF Che 1(3):189–202

    Google Scholar 

  • Paiva JE, Maldonade IR, Scamparini ARP (2009) Xylose production from sugarcane bagasse by surface response methodology. R Bras Eng Agríc Ambiental 13(1):75–80

    Google Scholar 

  • Pereira RS, Mussatto SI, Roberto IC (2011) Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J Ind Microbiol Biotechnol 38:71–78

    Article  PubMed  CAS  Google Scholar 

  • Petersson A, Almeida JRM, Modig T et al (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464

    Article  PubMed  CAS  Google Scholar 

  • Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Rahman SHA, Choudhury JP, Ahmad AL et al (2007) Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour Technol 98:554–559

    Article  PubMed  CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF et al (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganic, uronic acids and ether-solube organics. Enzyme Microb Technol 27:240–247

    Article  PubMed  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  PubMed  CAS  Google Scholar 

  • Sheu DC, Duan KJ, Jou SR et al (2003) Production of xylitol from Candida tropicalis by using an oxidation–reduction potential-stat controlled fermentation. Biotechnol Lett 25:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Silva SS, Afschar AS (1994) Microbial production of xylitol from d-xylose using Candida tropicalis. Biopro Engineer 11:129–134

    Article  Google Scholar 

  • Silva DDV, Felipe MGA (2006) Effect of glucose:xylose ratio on xylose reductase and xylitol dehydrogenase activities from Candida guilliermondii in sugarcane bagasse hydrolysate. J Chem Technol Biotechnol 81:1294–1300

    Article  Google Scholar 

  • Sitarz R, Bochenek R, Antos D (2011) Design of continuous ion exchange process for the wastewater treatment. Chem Eng Sci 66(23):6209–6219

    Article  Google Scholar 

  • Villarreal MLM, Prata AMR, Felip MGA et al (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24

    Article  CAS  Google Scholar 

  • Wang GS, Lee JW, Zhu JY et al (2011) Dilute acid pretreatment of corncob for efficient sugar production. Appl Biochem Biotechnol 163:658–668. doi:10.1007/s12010-010-9071-4

    Article  PubMed  CAS  Google Scholar 

  • Yahashi Y, Hatsu M, Horitsu H et al (1996) d-glucose feeding for improvement of xylitol productivity from d-xylose using Candida tropicalis immoblized on a non-woven fabric. Biotechnology 18(12):1395–1400

    CAS  Google Scholar 

  • Zhang HR, Qin XX, Silva SS et al (2009) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152(2):199–212

    Article  CAS  Google Scholar 

  • Zhao H, Wu GF, Zhang KC (2003) Technology study of normal pressure acid hydrolysis on corncob hemicellulose. J Nat Sci Heil Univ 20(1):118–121

    CAS  Google Scholar 

  • Zhuang J, Liu Y, Wu Z et al (2009) Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. Bio Res 4(2):674–686

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Hou-Rui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou-Rui, Z. (2012). Key Drivers Influencing the Large Scale Production of Xylitol. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_12

Download citation

Publish with us

Policies and ethics