Skip to main content

Current Analytical Methods for Qualitative and Quantitative Measurement of d-Xylitol

  • Chapter
  • First Online:
D-Xylitol
  • 1679 Accesses

Abstract

d-xylitol is a naturally-occurring five-carbon sugar alcohol. It can also be derived from the chemical reduction of d-xylose. It is widely used in recent years and will continue to be used as a food additive and sweetening agent in the food industry. The qualitative detection and quantification of d-xylitol in the presence of other sugars and sugar alcohols in fruits, vegetables and other natural sources is essential for industry production. A number of analytical methods have been developed over the years for qualitative detection and quantitative measurement of d-xylitol. Since most samples to be analyzed contain a mixture of compounds, highly efficient and sensitive analytical methods for d-xylitol in the mixture are required. Current analytical methods are usually comprised of two components: (1) an efficient separation unit, and (2) a structure identification unit. In this chapter, we provide an overview on these analytical methods used for the qualitative and quantitative determination of d-xylitol in samples from various sources. Chromatography-based techniques including GC, HPLC and CE methods with different detection options, such as UV, RI, ELS, etc., have been widely used. More advanced analytical instruments derived from hyphenation of chromatography with structure determination tools such as MS and NMR are becoming more and more accessible. The GC–MS, LC–MS and LC–MS/MS have now become routine methods for d-xylitol measurement. The coupling of spectroscopic methods such as NMR and MS to the chromatography methods can also provide structural information of the compounds being analyzed. Other methods such as the immunoassay and enzymatic assay methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H NMR:

Proton nuclear magnetic resonance

BSA:

Bovine serum albumin

CE:

Capillary electrophoresis

CZE:

Capillary zone electrophoresis

ELISA:

Enzyme-linked immunosorbent assay

ELS:

Evaporative light-scattering

ESI-MS:

Electrospray ionization mass spectrometry

FIA:

Flow injection analyisis

FID:

Flame Ionization Detector

FT-ICR:

Fourier transform ion cyclotron resonance

GC:

Gas chromatography

GC-FID:

Gas chromatography-flame ionization detector

GC-MS:

Gas chromatography-mass spectrometry

HPAEC:

High-pH anion exchange chromatography

HPLC:

High-performance liquid chromatography

IC-ELISA:

Indirect competitive enzyme-linked immunosorbant assay

IDC:

1-isopropyl-3-(3-dimethylaminopropyl) carbodiimide perchlorate

Ig E:

Immunoglobulin E

Ig G:

Immunoglobulin G

ISTD:

Internal standard

ITP:

Capillary isotachophoresis

LC-MS:

Liquid chromatography-mass spectrometry

LC-NMR:

Liquid chromatography-nuclear magnetic resonance

MS:

Mass spectrometry

NAD+ :

Nicotinamide adenine dinucleotide

NADP+ :

Nicotinamide adenine dinucleotide phosphate

NMR:

Nuclear magnetic resonance

OPLC:

Optimum performance laminar chromatography

PAD:

Pulsed amperometric detector

RI:

Refractive index

RSD:

Relative standard deviation

SIM:

Selective-ion-monitoring

TLC:

Thin layer chromatography

TMS:

Trimethylsilylation

XDH:

d-xylitol dehydrogenase

XYO:

d-xylitol oxidase

References

  • Altamirano AF, Vazquez F, De Figueroa LIC (2000) Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia Microbiol 45(3):255–258

    Article  CAS  Google Scholar 

  • Bhandari P, Kumar N, Singh B, Kaul VK (2008) Simultaneous determination of sugars and picrosides in Picrorhiza species using ultrasonic extraction and high-performance liquid chromatography with evaporative light scattering detection. J Chromatogr A 1194(2):257–261

    Article  PubMed  CAS  Google Scholar 

  • Cataldi TRI, Campa C, Casella IG, Bufo SA (1999) Determination of maltitol, isomaltitol, and lactitol by high-PH anion-exchange chromatography with pulsed amperometric detection. J Agr Food Chem 47:157–163

    Article  CAS  Google Scholar 

  • Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6(7):834–844

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Chen CS, Hsieh PH (2010) On-line desalting and carbohydrate analysis for immobilized enzyme hydrolysis of waste cellulosic biomass by column-switching high-performance liquid chromatography. J Chromatogr A 1217(14):2104–2110

    Article  PubMed  CAS  Google Scholar 

  • Clayton S J, Read DB, Murray PJ, Gregory PJ (2008) Exudation of alcohol and aldehyde sugars from roots of defoliated Lolium perenne L. grown under sterile conditions. J Chem Ecol 34(11):1411–1421

    Google Scholar 

  • Corradini C, Cavazza A, Canali G, Nicoletti I (1998) Improved method for the analysis of alditols in confectionery products by capillary zone electrophoresis (CZE): Comparison with high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Ital J Food Sci 10(3):195–206

    CAS  Google Scholar 

  • Fukushima T, Mitsuhashi S, Tomiya M, Kawai J, Hashimoto K, Toyo’oka T (2007) Determination of rat brain kynurenic acid by column-switching HPLC with fluorescence detection. Biomed Chromatogr 21(5):514–519

    Article  PubMed  CAS  Google Scholar 

  • Galensa R (1983) High-performance liquid chromatographic determination of sugar alcohols with UV-detection in the ppm-range in food. I. Z Lebensm Unters Forsch 176(6):417–420

    Article  CAS  Google Scholar 

  • Graça G, Duarte IF, Goodfellow BJ, Carreira IM, Couceiro AB, Domingues MR, Spraul M, Tseng LH, Gil AM (2008) Metabolite profiling of human amniotic fluid by hyphenated nuclear magnetic resonance spectroscopy. Anal Chem 80(15):6085–6092

    Article  PubMed  Google Scholar 

  • Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276

    Google Scholar 

  • Griffiths L (1995) Optimization of NMR and HPLC conditions for LC-NMR. Anal Chem 67(22):4091–4095

    Article  CAS  Google Scholar 

  • Guttman A (1997) Analysis of monosaccharide composition by capillary electrophoresis. J Chromatogr A 763(1–2):271–277

    PubMed  CAS  Google Scholar 

  • Haga H, Nakajima T (1989) Determination of polyol profiles in human urine by capillary gas chromatography. Biomed Chromatogr 3(2):68–71

    Article  PubMed  CAS  Google Scholar 

  • Herrmannova M, Krivankova L, Bartos M, Vytras K (2006) Direct simultaneous determination of eight sweeteners in foods by capillary isotachophoresis. J Sep Sci 29(8):1132–1137

    Article  PubMed  CAS  Google Scholar 

  • Indyk HE, Woollard DC (1994) Determination of free myo-inositol in milk and infant formula by high-performance liquid chromatography. Analyst 119:397–402

    Article  PubMed  CAS  Google Scholar 

  • Jaffe G (1978) Xylitol-a specialty sweetener. Sugar y Azucar 73:36–42

    Google Scholar 

  • James M (2009) Embracing xylitol. Vital 7(1):18–20

    Article  Google Scholar 

  • Jork H, Funk W, Fischer W, Wimmer H (1990) Thin-layer chromatography. VCH Weinheim, Germany

    Google Scholar 

  • Katayama M, Matsuda Y, Kobayashi K, Kaneko S, Ishikawa H (2006) Simultaneous determination of glucose, 1,5-anhydro-d-glucitol and related sugar alcohols in serum by high-performance liquid chromatography with benzoic acid derivatization. Biomed Chromatogr 20(5):440–445

    Article  PubMed  CAS  Google Scholar 

  • Kertesz P, Szoke B, Keri G, Nikolics K (1983) Detection and quantitative determination of xylitol by high power liquid chromatography. Fogorv Sz 76(12):373–376

    PubMed  CAS  Google Scholar 

  • Kopka J (2006) Current challenges and developments in GC-MS based metabolite profiling technology. J Biotechnol 124(1):312–322

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Chung BC (2006) Simultaneous measurement of urinary polyols using gas chromatography/mass spectrometry. J Chromatogr B 31(1–2):126–131

    Article  Google Scholar 

  • Li Y, Pang T, Wang X, Li Q, Lu X, Xu G (2011) Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. J Sep Sci 34(12):1447–1454

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Cheng K, Ge J, Ping W (2011) Statistical optimization of xylitol production from corncob hemicellulose hydrolysate by Candida tropicalis HDY-02. New Biotechnol 28:673–678

    Article  CAS  Google Scholar 

  • Lohmander LS (1986) Analysis by high-performance liquid chromatography of radioactively labeled carbohydrate components of proteoglycans. Anal Biochem 154(1):75–84

    Article  PubMed  CAS  Google Scholar 

  • Mäkinen KK, Söderllng E (1980) A quantitative study of mannitol, sorbitol, xylitol, and xylose in wild berries and commercial fruits. J Food Sci 45(2):367–371

    Article  Google Scholar 

  • Mäkinen KK (1992) Dietary prevention of dental caries by xylitol-clinical effectiveness and safety. J Appl Nutr 44:16–28

    Google Scholar 

  • Martínez Montero C, Rodríguez Dodero M, Guillén Sánchez D, Barroso C (2004) Analysis of low molecular weight carbohydrates in food and beverages: a review. Chromatographia 59:15–30

    Google Scholar 

  • Mickenautsch S, Yengopal V (2012) Anticariogenic effect of xylitol versus fluoride—a quantitative systematic review of clinical trials. Int Dent J 62(1):6–20

    Article  PubMed  Google Scholar 

  • Mitchell H (2006) Sweeteners and sugar alternatives in food technology. Wiley Online Library

    Google Scholar 

  • Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, Kim YS (2010) Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J Sci Food Agr 90(11):1926–1935

    CAS  Google Scholar 

  • Nojiri S, Saito K, Taguchi N, Oishi M, Maki T (1999) Liquid chromatographic determination of sugar alcohols in beverages and foods after nitrobenzoylation. J AOAC Int 82(1):134–140

    PubMed  CAS  Google Scholar 

  • Nojiri S, Taguchi N, Oishi M, Suzuki S (2000) Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation. J Chromatogr A 893(1):195–200

    Article  PubMed  CAS  Google Scholar 

  • Ohsawa K, Yoshimura Y, Watanabe S, Tanaka H, Yokota A, Tamura K, Imaeda K (1986) Determination of xylitol in the human serum and saliva by ion chromatography with pulsed amperometric detection. Anal Sci 2(2):165–168

    Article  CAS  Google Scholar 

  • Park SM, Sang BI, Park DW, Park DH (2005) Electrochemical reduction of xylose to xylitol by whole cells or crude enzyme of Candida peltata. J Microbiol 43:451–455

    PubMed  CAS  Google Scholar 

  • Poole CF, Poole SK (1995) Multidimensionality in planar chromatography. J Chromatogr A 703(1–2):573–612

    CAS  Google Scholar 

  • Pospisilova M, Polasek M, Safra J, Petriska I (2007) Determination of mannitol and sorbitol in infusion solutions by capillary zone electrophoresis using on-column complexation with borate and indirect spectrophotometric detection. J Chromatogr A 1143(1–2):258–263

    PubMed  CAS  Google Scholar 

  • Rainey CL, Conder PA, Goodpaster JV (2011) Chemical characterization of dissolvable tobacco products promoted to reduce harm. J Agric Food Chem 59(6):2745–2751

    Article  PubMed  CAS  Google Scholar 

  • Rhee JI, Yamashita M, Scheper T (2002) Development of xylitol oxidase-based flow injection analysis for monitoring of xylitol concentrations. Anal Chim Acta 456(2):293–301

    Article  CAS  Google Scholar 

  • Roboz J, Kappatos DC, Greaves J, Holland JF (1984) Determination of polyols in serum by selected ion monitoring. Clin Chem 30(10):1611–1615

    PubMed  CAS  Google Scholar 

  • Rovio S, Yli-Kauhaluoma J, Siren H (2007) Determination of neutral carbohydrates by CZE with direct UV detection. Electrophoresis 28(17):3129–3135

    Article  PubMed  CAS  Google Scholar 

  • Russo J (1976) Xylitol: anti-carie sweetener? Food Eng 48(4):37–40

    Google Scholar 

  • Salgado JM, Carballo EM, Max B, Domínguez JM (2010) Characterization of vinasses from five certified brands of origin (CBO) and use as economic nutrient for the xylitol production by Debaryomyces hansenii. Bioresource Technol 101(7):2379–2388

    Article  CAS  Google Scholar 

  • Shetty HU, Holloway HW, Rapoport SI (1995) Capillary gas chromatography combined with ion trap detection for quantitative profiling of polyols in cerebrospinal fluid and plasma. Anal Biochem 224(1):279–285

    Article  PubMed  CAS  Google Scholar 

  • Soga T, Heiger DN (1998) Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis. Anal Biochem 261(1):73–78

    Article  PubMed  CAS  Google Scholar 

  • Sreenath K, Venkatesh YP (2010) Quantification of xylitol in foods by an indirect competitive immunoassay. J Agr Food Chem 58(2):1240–1246

    Article  CAS  Google Scholar 

  • Sweeley C, Bentley R, Makita M, Wells W (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85(16):2497–2507

    Article  CAS  Google Scholar 

  • Takamizawa K, Uchida S, Hatsu M, Suzuki T, Kawai K (2000) Development of a xylitol biosensor composed of xylitol dehydrogenase and diaphorase. Can J Microbiol 46(4):350–357

    Article  PubMed  CAS  Google Scholar 

  • Tamburini E, Bernardi T, Granini M, Vaccari G (2006) Separation and quantitative determination of aldoses and alditols by over-pressured layer chromatography (OPLC). JPC-J Planar Chromat 19(107):10–14

    Article  CAS  Google Scholar 

  • Tyihak E, Mincsovics E, Nyiredy S (2001) Planar chromatography: a retrospective view for the third millennium. Springer, Budapest

    Google Scholar 

  • Uhari M, Kontiokari T, Koskela M, Niemela M (1996) Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial. BMJ 313:1180–1184

    Google Scholar 

  • Vermeir S, Nicolai BM, Jans K, Maes G, Lammertyn J (2007) High-throughput microplate enzymatic assays for fast sugar and acid quantification in apple and tomato. J Agr Food Chem 55(9):3240–3248

    Article  CAS  Google Scholar 

  • Wamelink MM, Smith DE, Jakobs C, Verhoeven NM (2005) Analysis of polyols in urine by liquid chromatography-tandem mass spectrometry: a useful tool for recognition of inborn errors affecting polyol metabolism. J Inherit Metab Dis 28(6):951–963

    Article  PubMed  CAS  Google Scholar 

  • Wan EC, Yu JZ (2006) Determination of sugar compounds in atmospheric aerosols by liquid chromatography combined with positive electrospray ionization mass spectrometry. J Chromatogr A 1107(1–2):175–181

    PubMed  CAS  Google Scholar 

  • Wan EC, Yu JZ (2007) Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environ Sci Technol 41(7):2459–2466

    Article  PubMed  CAS  Google Scholar 

  • Watkins MA, Winger BE, Shea RC, Kenttämaa HI (2005) Ion-molecule reactions for the characterization of polyols and polyol mixtures by ESI/FT-ICR mass spectrometry. Anal Bioanal Chem 77(5):1385–1392

    CAS  Google Scholar 

  • Yamamoto A, Ohmi H, Matsunaga A, Ando K, Hayakawa K, Nishimura M (1998) Selective determination of D-sorbitol and D-mannitol in foodstuffs by ion chromatography with polarized photometric detection. J Chromatogr A 804:305–309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, Z., Amartey, S., Jiang, ZH., Qin, W. (2012). Current Analytical Methods for Qualitative and Quantitative Measurement of d-Xylitol. In: da Silva, S., Chandel, A. (eds) D-Xylitol. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31887-0_11

Download citation

Publish with us

Policies and ethics