Skip to main content

The Global Landscape of Objective Functions for the Optimization of Shogi Piece Values with a Game-Tree Search

  • Conference paper
Book cover Advances in Computer Games (ACG 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7168))

Included in the following conference series:

Abstract

The landscape of an objective function for supervised learning of evaluation functions is numerically investigated for a limited number of feature variables. Despite the importance of such learning methods, the properties of the objective function are still not well known because of its complicated dependence on millions of tree-search values. This paper shows that the objective function has multiple local minima and the global minimum point indicates reasonable feature values. Moreover, the function is continuous with a practically computable numerical accuracy. However, the function has non-partially differentiable points on the critical boundaries. It is shown that an existing iterative method is able to minimize the functions from random initial values with great stability, but it has the possibility to end up with a non-reasonable local minimum point if the initial random values are far from the desired values. Furthermore, the obtained minimum points are shown to form a funnel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anantharaman, T.: Evaluation tuning for computer chess: Linear discriminant methods. ICCA Journal 20, 224–242 (1997)

    Google Scholar 

  2. Baxter, J., Tridgell, A., Weaver, L.: TDLeaf(λ) Combining temporal difference learning with game-tree search. In: Proceedings of the 9th Australian Conference on Neural Networks (ACNN 1998), Brisbane, Australia, pp. 168–172 (1999)

    Google Scholar 

  3. Baxter, J., Tridgell, A., Weaver, L.: Learning to play chess using temporal-differences. Machine Learning 40, 242–263 (2000)

    Article  Google Scholar 

  4. Beal, D.F., Smith, M.C.: Temporal difference learning applied to game playing and the results of application to shogi. Theoretical Computer Science 252, 105–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Campbell, M., Joseph Hoane, J.A., Hsu, F.: Deep Blue. Artificial Intelligence 134, 57–83 (2002)

    Article  MATH  Google Scholar 

  6. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009)

    Book  Google Scholar 

  7. Fürnkranz, J.: Machine Learning in Games: A Survey. In: Fürnkranz, J., Kubat, M. (eds.) Machines that Learn to Play Games, pp. 11–59. Nova Science Publishers (2001)

    Google Scholar 

  8. Hoki, K., Kaneko, T.: Large-Scale Optimization of Evaluation Functions with Minimax Search (in preparation)

    Google Scholar 

  9. Hoki, K.: Bonanza – The Computer Shogi Program (2011) (in Japanese), http://www.geocities.jp/bonanzashogi/ (last access: 2011)

  10. Hoki, K.: Optimal control of minimax search results to learn positional evaluation. In: Proceedings of the 11th Game Programming Workshop (GPW 2006), Hakone, Japan, pp. 78–83 (2006) (in Japanese)

    Google Scholar 

  11. Hyatt, R.: Crafty 23.4 (2010), ftp://ftp.cis.uab.edu/pub/hyatt

  12. Kaneko, T.: Learning evaluation functions by comparison of sibling nodes. In: Proceedings of the 12th Game Programming Workshop (GPW 2007), Hakone, Japan, pp. 9–16 (2007) (in Japanese)

    Google Scholar 

  13. Knuth, D.E., Moor, R.W.: An Analysis of Alpha-Beta Pruning. Artificial Intelligence 13, 293–326 (1991)

    Google Scholar 

  14. Letouzey, F.: Fruit 2.1 (2005), http://arctrix.com/nas/chess/fruit

  15. Marsland, T., Campbell, M.: Parallel Search of Strongly Ordered Game Trees. ACM Computing Survey 14, 533–551 (1982)

    Article  Google Scholar 

  16. Marsland, T.A.: Evaluation-Function Factors. ICCA Journal 8, 47–57 (1985)

    Google Scholar 

  17. Marsland, T.A., Member, S., Popowich, F.: Parallel game-tree search. IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 442–452 (1985)

    Article  Google Scholar 

  18. Nocedal, J., Wright, S.: Numerical Optimization. Springer (2006)

    Google Scholar 

  19. Nowatzyk, A.: (2000), http://tim-mann.org/DTevaltune.txt (last access: 2010)

  20. Romstad, T.: Stockfish 1.9.1 (2010), http://www.stockfishchess.com

  21. Schaeffer, J., Hlynka, M., Jussila, V.: Temporal difference learning applied to a high-performance game-playing program. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 529–534. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  22. Shannon, C.E.: Programming a Computer for Playing Chess. Philosophical Magazine, Ser. 7 41(314) (1950)

    Google Scholar 

  23. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods. Nonlinear Programming. Springer Science+Business Media, LLC (2006)

    Google Scholar 

  24. Tesauro, G.: Comparison training of chess evaluation functions. In: Furnkranz, J., Kumbat, M. (eds.) Machines that Learn to Play Games, pp. 117–130. Nova Science Publishers (2001)

    Google Scholar 

  25. Tesauro, G.: Programming backgammon using self-teaching neural nets. Artificial Intelligence 134, 181–199 (2002)

    Article  MATH  Google Scholar 

  26. Veness, J., Silver, D., Uther, W., Blair, A.: Bootstrapping from game tree search. In: Bengio, Y., Schuurmans, D., Laerty, J., Williams, C.K.I., Culotta, A. (eds.) Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, pp. 1937–1945 (2009)

    Google Scholar 

  27. Yamashita, H.: YSS 7.0 – data structures and algorithms (in Japanese), http://www32.ocn.ne.jp/~yss/book.html (last access: 2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoki, K., Kaneko, T. (2012). The Global Landscape of Objective Functions for the Optimization of Shogi Piece Values with a Game-Tree Search. In: van den Herik, H.J., Plaat, A. (eds) Advances in Computer Games. ACG 2011. Lecture Notes in Computer Science, vol 7168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31866-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31866-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31865-8

  • Online ISBN: 978-3-642-31866-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics