Advertisement

Linear Scaling Methodology

  • Oleksandr LobodaEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

In 1991 the elongation method, an efficient method for quantum mechanical calculations of large systems, was originally proposed by Imamura [1] during one of his stays in Heidelberg, Germany. Although in the early 1990s the concept of and need for order-N [O(N)] methods didn’t exist, Prof. Akira Imamura was thinking about “how to avoid direct SCF calculations for large biological systems (biopolymers composed of hundreds if not thousands of residues of amino acids or nucleic acid base pairs in proteins and DNA or RNA) by treating only the local interactions between a few neighbor residues in large systems.” While contemplating how to perform such calculations, he got the idea of “theoretically simulating the synthesis of polymers so as to mimic the chemical reactions which occur in nature during polymerization reactions to form peptides, proteins and polynucleotides.

Keywords

Energy Matrix Elongation Process Freeze Orbital Freeze Region Fragment Molecular Orbital 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Imamura, A., Aoki, Y., Maekawa, K.: A theoretical synthesis of polymers by using uniform localization of molecular orbitals: proposal of an elongation method. J. Chem. Phys. 95, 5419–5431 (1991)Google Scholar
  2. 2.
    Aoki, Y., Imamura, A.: Local density of states of aperiodic polymers using the localized orbitals from an ab initio elongation method. J. Chem. Phys. 97, 8432–8440 (1992)CrossRefGoogle Scholar
  3. 3.
    Aoki, Y., Suhai, S., Imamura, A.: An efficient cluster elongation method in density functional theory and its application to poly-hydrogen-bonding molecules. J. Chem. Phys. 101, 10808–10823 (1994)CrossRefGoogle Scholar
  4. 4.
    Makowski, M., Korchowiec, J., Gu, F.L., Aoki, Y.: Describing electron correlation effects in the framework of the elongation method -Elongation-MP2: formalism, implementation and efficiency. J. Comput. Chem. 31, 1733–1740 (2010)Google Scholar
  5. 5.
    Gu, F.L., Imamura, A., Aoki, Y.: Elongation method for polymers and its application to nonlinear optics, in atoms, molecules and clusters in electric fields: theoretical approaches to the calculation of electric polarizabilities. In: Maroulis, G. (ed.) Computational Numerical and Mathematical Methods in Sciences and Engineering, vol. 1, pp. 97–177. Imperial College Press, London (2006)Google Scholar
  6. 6.
    Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085–1123 (1999)CrossRefGoogle Scholar
  7. 7.
    Salek, P., Hoest, S., Thoegersen, L., Joergensen, P., Manninen, P., Olsen, J., Jansik, B., Reine, S., Pawlowski, F., Tellgren, E., Helgaker, T., Coriani, S.: Linear-scaling implementation of molecular electronic self-consistent field theory. J. Chem. Phys. 126, 114110 (2007)CrossRefGoogle Scholar
  8. 8.
    Goedecker, S., Teter, M.: Tight-binding electronic-structure calculations and tight-binding molecular dynamics with localized orbitals. Phys. Rev. B 51, 9455–9464 (1995)CrossRefGoogle Scholar
  9. 9.
    Stephan, U., Drabold, D.: Order-N projection method for first-principles computations of electronic quantities and Wannier functions. Phys. Rev. B 57, 6391–6407 (1998)CrossRefGoogle Scholar
  10. 10.
    Li, X.-P., Nunes, W., Vanderbilt, D.: Density-matrix electronic-structure method with linear system-size scaling. Phys. Rev. B 47, 10891–10894 (1993)CrossRefGoogle Scholar
  11. 11.
    Zhao, Q., Yang, W.: Analytical energy gradients and geometry optimization in the divide-and-conquer method for large molecules. J. Chem. Phys. 102, 9598–9603 (1995)CrossRefGoogle Scholar
  12. 12.
    Kim, J., Mauri, F., Galli, G.: Total-energy global optimizations using nonorthogonal localized orbitals. Phys. Rev. B 52, 1640–1648 (1995)CrossRefGoogle Scholar
  13. 13.
    Hernandez, E., Gillan, M.: Self-consistent first-principles technique with linear scaling. Phys. Rev. B 51, 10157–10160 (1995)CrossRefGoogle Scholar
  14. 14.
    Yang, W.: Direct calculation of electron density in density-functional theory. Phys. Rev. Lett. 66, 1438–1441 (1991)CrossRefGoogle Scholar
  15. 15.
    Yang, W., Lee, T.-S.: A density-matrix divide-and-conquer approach for electronic structure calculations of large molecules. J. Chem. Phys. 103, 5674–5678 (1995)CrossRefGoogle Scholar
  16. 16.
    Akama, T., Kobayashi, M., Nakai, H.: Implementation of divide-and-conquer method including Hartree-Fock exchange interaction. J. Comput. Chem. 28, 2003–2012 (2007)CrossRefGoogle Scholar
  17. 17.
    Kobayashi, M., Imamura, Y., Nakai, H.: Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method. J. Chem. Phys. 127, 074103 (2007)CrossRefGoogle Scholar
  18. 18.
    Kitaura, K., Ikeo, E., Asada, T., Nakano, T., Uebayasi, M.: Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 313, 701–706 (1999)CrossRefGoogle Scholar
  19. 19.
    Fedorov, D.G., Kitaura, K.: The importance of three-body terms in the fragment molecular orbital method. J. Chem. Phys. 120, 6832–6840 (2004)CrossRefGoogle Scholar
  20. 20.
    Fedorov, D.G., Kitaura, K.: On the accuracy of the 3-body fragment molecular orbital method (FMO) applied to density functional theory. Chem. Phys. Lett. 389, 129–134 (2004)CrossRefGoogle Scholar
  21. 21.
    Fedorov, D.G., Kitaura, K.: Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J. Phys. Chem. A 111, 6904–6914 (2007)CrossRefGoogle Scholar
  22. 22.
    Mochizuki, Y., Koikegami, S., Nakano, T., Amari, S., Kitaura, K.: Large scale MP2 calculations with fragment molecular orbital scheme. Chem. Phys. Lett. 396, 473–479 (2004)CrossRefGoogle Scholar
  23. 23.
    Mochizuki, Y., Fukuzawa, K., Kato, A., Tanaka, S., Kitaura, K., Nakano, T.: A configuration analysis for fragment interaction. Chem. Phys. Lett. 410, 247–253 (2005)CrossRefGoogle Scholar
  24. 24.
    Mochizuki, Y., Ishikawa, T., Tanaka, K., Tokiwa, H., Nakano, T., Tanaka, S.: Dynamic polarizability calculation with fragment molecular orbital scheme. Chem. Phys. Lett. 418, 418–422 (2006)CrossRefGoogle Scholar
  25. 25.
    Mochizuki, Y., Yamashita, K., Murase, T., Nakano, T., Fukuzawa, K.: Takematsu, K., Watanabe, H., Tanaka, S.: Large scale FMO-MP2 calculations on a massively parallel-vector computer. Chem. Phys. Lett. 457, 396–403 (2008)CrossRefGoogle Scholar
  26. 26.
    White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992)CrossRefGoogle Scholar
  27. 27.
    Kurashige, Y., Yanai, T.: High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. J. Chem. Phys. 130, 234114 (2009)CrossRefGoogle Scholar
  28. 28.
    Mizukami, W., Kurashige, Y., Yanai, T.: Communication: novel quantum states of electron spins in polycarbenes from ab initio density matrix renormalization group calculations. J. Chem. Phys. 133, 091101 (2010)CrossRefGoogle Scholar
  29. 29.
    Gu, F.L., Aoki, Y., Korchowiec, J., Imamura, A., Kirtman, B.: A new localization scheme for the elongation method. J. Chem. Phys. 121, 10385–10391 (2004)CrossRefGoogle Scholar
  30. 30.
    Aoki Y, Gu FL (2009) Generalized elongation method: from one-dimension to three-dimension. In: Champagne, B., Gu, F.L., Luis, J.M., Springborg M (org) International Conference of Computational Methods in Sciences and Engineering 2009 (ICCMSE 2009), pp. 46–49Google Scholar
  31. 31.
    Makowski, M., Gu, F.L., Aoki, Y.: Elongation-CIS method: describing excited states of large molecular systems in regionally localized molecular orbital basis. J. Comput. Meth. Sci. Eng. 10, 473–481 (2010)Google Scholar
  32. 32.
    Korchowiec, J., Gu, F.L., Imamura, A., Kirtman, B., Aoki, Y.: Elongation method with cutoff technique for linear SCF scaling. Int. J. Quantum. Chem. 102, 785–794 (2005)CrossRefGoogle Scholar
  33. 33.
    Makowski, M., Korchowiec, J., Gu, F.L., Aoki, Y.: Efficiency and accuracy of the elongation method as applied to the electronic structures of large systems. J. Comp. Chem. 27, 1603–1619 (2006)CrossRefGoogle Scholar
  34. 34.
    Korchowiec, J., Lewandowski, J., Makowski, M., Gu, F.L., Aoki, Y.: Elongation cutoff technique armed with quantum fast multipole method for linear scaling. J. Comput. Chem. 30, 2515–2525 (2009)CrossRefGoogle Scholar
  35. 35.
    Korchowiec, J., Silva, P., Makowski, M., Gu, F.L., Aoki, Y.: Elongation cutoff technique at Kohn-Sham level of theory. Int. J. Quantum. Chem. 110, 2130–2139 (2010)CrossRefGoogle Scholar
  36. 36.
    Gu, F.L., Aoki, Y., Imamura, A., Bishop, D.M., Kirtman, B.: Application of the elongation method to nonlinear optical properties: finite field approach for calculating static electric (hyper)polarizabilities. Mol. Phys. 101, 1487–1494 (2003)CrossRefGoogle Scholar
  37. 37.
    Ohnishi, S., Gu, F.L., Naka, K., Imamura, A., Kirtman, B., Aoki, Y.: Calculation of static (hyper)polarizabilities for \(\pi \)-conjugated donor/acceptor molecules and block copolymers by the elongation finite-field method. J. Phys. Chem. A 108, 8478–8484 (2004)CrossRefGoogle Scholar
  38. 38.
    Gu, F.L., Guillaume, M., Botek, E., Champagne, B., Castet, F., Ducasse, L., Aoki, Y.: Elongation method and supermolecule approach for the calculation of nonlinear susceptibilities. Application to the 3-methyl-4-nitropyridine 1-oxide and 2-methyl-4-nitroaniline crystals. J. Comput. Meth. Sci. Eng. 6, 171–188 (2006)Google Scholar
  39. 39.
    Ohnishi, S., Orimoto, Y., Gu, F.L., Aoki, Y.: Nonlinear optical properties of polydiacetylene with donor-acceptor substitution block. J. Chem. Phys. 127, 084702 (2007)CrossRefGoogle Scholar
  40. 40.
    Chen, W., Yu, G.-T., Gu, F.L., Aoki, Y.: Investigation on the electronic structures and nonlinear optical properties of pristine boron nitride and boron nitride-carbon heterostructured single-wall nanotubes by the elongation method. J. Phys. Chem. C 113, 8447–8454 (2009)CrossRefGoogle Scholar
  41. 41.
    Yan, L.K., Pomogaeva, A., Gu, F.L., Aoki, Y.: Theoretical study on nonlinear optical properties of metalloporphyrin using elongation method. Theor. Chem. Acc. 125, 511–520 (2010)CrossRefGoogle Scholar
  42. 42.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S.: Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. J. Comput. Chem. 14, 1347–1363 (1993)CrossRefGoogle Scholar
  43. 43.
    Pomogaeva, A., Gu, F.L., Imamura, A., Aoki, Y.: Electronic structures and nonlinear optical properties of supramolecular associations of benzo-2,1,3-chalcogendiazoles by the elongation method. Theor. Chem. Acc. 125, 453–460 (2010)CrossRefGoogle Scholar
  44. 44.
    Blase, X., Charlier, J.C., De Vita, A., Car, R.: Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions. Appl. Phys. A 68, 293–300 (1999)CrossRefGoogle Scholar
  45. 45.
    Terrones, M., Romo-Herrera, J.M., Cruz-Silva, E., Lopez-Urias, F., Munoz-Sandoval, E., Velazquez-Salazar, J.J., Terrones, H., Bando, Y., Golberg, D.: Pure and doped boron nitride nanotubes. Mater. Today 10, 30–38 (2007)CrossRefGoogle Scholar
  46. 46.
    Gaussian 03, Revision C.02, Frisch M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr, Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A., Gaussian, Inc., Wallingford, CT (2004)Google Scholar
  47. 47.
  48. 48.
    Liao, M.-S., Watts, J.D., Huang, M.-J.: Dispersion-corrected DFT calculations on C60-porphyrin complexes. Phys. Chem. Chem. Phys. 11, 4365–4374 (2009)CrossRefGoogle Scholar
  49. 49.
    Loboda, O., Zalesny, R., Avramopoulos, A., Papadopoulos, M.G., Artacho, E.: Linear-scaling calculations of linear and nonlinear optical properties of [60]fullerene derivatives. In: Maroulis, G., Simos, T.E. (eds.) Computational Methods in Sciences and Engineering. Advances In Computational Science Book Series: AIP Conference Proceedings, vol 1108, 198–204 (2009)Google Scholar
  50. 50.
    Loboda, O., Zalesny, R., Avramopoulos, A., Luis, J.-M., Kirtman, B., Tagmatarchis, N., Reis, H., Papadopoulos, M.G.: Linear and nonlinear optical properties of [60]fullerene derivatives. J. Phys. Chem. A 113, 1159–1170 (2009)CrossRefGoogle Scholar
  51. 51.
    Zalesny, R., Loboda, O., Iliopoulos, K., Chatzikyriakos, G., Couris, S., Rotas, G., Tagmatarchis, N., Avramopoulose, A., Papadopoulos, M.G.: Linear and nonlinear optical properties of triphenylamine-functionalized C60: insights from theory and experiment. Phys. Chem. Chem. Phys. 12, 373–381 (2010)CrossRefGoogle Scholar
  52. 52.
    Palummo, M., Hogan, C., Sottile, F., BagalÃ, P., Rubio, A.: Ab initio electronic and optical spectra of free-base porphyrins: the role of electronic correlation. J. Chem. Phys. 131, 084102 (2009)CrossRefGoogle Scholar
  53. 53.
    Yeon, K.Y., Jeong, D., Kim, S.K.: Intrinsic lifetimes of the Soret bands of the free-base tetraphenylporphine (H2TPP) and Cu(II)TPP in the condensed phase. Chem. Commun. 46, 5572–5574 (2010)CrossRefGoogle Scholar
  54. 54.
    Li, C., Ly, J., Lei, B., Fan, W., Zhang, D., Han, J., Mayyappan, M., Thompson, C., Zhou, M.: Data storage studies on nanowire transistors with self-assembled porphyrin molecules. J. Phys. Chem. B 108, 9646–9649 (2004)CrossRefGoogle Scholar
  55. 55.
    Kwok, K.S.: Materials for future electronics. Mater. Today 6, 20–27 (2003)CrossRefGoogle Scholar
  56. 56.
    Duan, X., Huang, Y., Lieber, C.M.: Nonvolatile memory and programmable logic from molecule-gated nanowires. Nano. Lett. 2, 487–490 (2002)CrossRefGoogle Scholar
  57. 57.
    Meier H, Mühling, B.: Synthesis and properties of oligo(2,5-thienylene)s. In: Waring, A. (ed.) ARKIVOC: Special Issue “5th Eurasian Conference on Heterocyclic Chemistry” ix:57–69 (2009)Google Scholar
  58. 58.
    Obara, Y., Takimiya, K., Aso, Y., Otsubo, T.: Synthesis and photophysical properties of [60]fullerene-oligo(thienylene-ethynylene) dyads. Tetrahedron Lett. 42, 6877–6881 (2001)CrossRefGoogle Scholar
  59. 59.
    Tormos, G.V., Nugara, P.N., Lakshmikantham, M.V., Gava, M.P.: Poly(2,5-thienylene ethynylene) and related oligomers. Synth. Met. 53, 271–281 (1993)CrossRefGoogle Scholar
  60. 60.
    Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 474, 578–580 (1977)CrossRefGoogle Scholar
  61. 61.
    Chiang, C.K., Druy, M.A., Gau, S.C., Heeger, A.J., Louis, E.J., MacDiarmid, A.G., Park, Y.W., Shirakawa, H.: Synthesis of highly conducting films of derivatives of polyacetylene, (CH)x. J. Am. Chem. Soc. 100, 1013–1015 (1978)CrossRefGoogle Scholar
  62. 62.
    MacDiarmid, A.G.: Synthetic metals: a novel role for organic polymers. Synth. Metals 125, 11–22 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Colloid and Water ChemistryKievUkraine

Personalised recommendations