Advertisement

Endohedral Metallofullerenes

  • Oleksandr LobodaEmail author
Chapter
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Since their discovery endohedral fullerenes have been extensively investigated because of their novel structure and properties. Electrical properties have been of major interest owing to a variety of possible applications ranging from qubits for quantum computation to organic photovoltaic devices. Our interest in this connection lies in the theoretical determination of the linear and nonlinear optical properties, i.e. the (hyper)polarizabilities, of these materials. For that purpose we have chosen initially to study the prototypical metal endohedral fullerene, Li@C\(_{60}\), and its cation \([\)Li@C\(_{60}]^+\).

Keywords

Dipole Moment Fullerene Cage Nuclear Relaxation Vibrational Contribution Endohedral Fullerene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shinohara, H.: Rep. Prog. Phys. 63, 843 (2000)CrossRefGoogle Scholar
  2. 2.
    Delany, P., Greer, J.C.: Appl. Phys. Lett. 84, 431 (2004)CrossRefGoogle Scholar
  3. 3.
    Ross, R.B., Cardona, C.M., Guldi, D.M., Sankaranarayanan, S.G., Reese, M.O.: Kopidakis, N., Peet, J., Walker, B., Bazan, G.C., Van Keuren, E., Holloway, B.C., Drees, M. Nat. Mater. 8, 208 (2009)CrossRefGoogle Scholar
  4. 4.
    Whitehouse, D.B., Buckingham, A.D.: Chem. Phys. Lett. 207, 332 (1993)CrossRefGoogle Scholar
  5. 5.
    Campbell, E.E.B., Fanti, M., Hertel, I.V., Mitzner, R.: Zerbetto. F. Chem. Phys. Lett. 28(8), 131 (1998)CrossRefGoogle Scholar
  6. 6.
    Campbell, E.E.B., Couris, S., Fanti, M., Koudoumas, E., Krawez, N., Zerbetto, F.: Adv. Mater. 11, 405 (1999)CrossRefGoogle Scholar
  7. 7.
    Yaghobi, M., Rafie, R., Koohi, A.: J. Mol. Struct. Theochem. 905, 48 (2009)CrossRefGoogle Scholar
  8. 8.
    Yaghobi, M., Koohi, A.: Mol. Phys. 108, 119 (2010)CrossRefGoogle Scholar
  9. 9.
    Liu, J., Iwata, S., Gu, B.: J. Phys. Condes. Matter. 6, L253 (1994)CrossRefGoogle Scholar
  10. 10.
    Tang, C.M., Zhu, W.H., Deng, K.M.: J. Molec. Struct. Theochem. 894, 112 (2009)CrossRefGoogle Scholar
  11. 11.
    Tang, C.M., Fu, S.Y., Deng, K.M., Yuan, Y.B., Tan, W.S., Huang, D.C., Wang, X.: J. Mol. Struct. (Theochem) 867, 111 (2008)CrossRefGoogle Scholar
  12. 12.
    Torrens, F.: J. Phys. Org. Chem. 15, 742 (2002)CrossRefGoogle Scholar
  13. 13.
    Torrens, F.: Nanotechnology 13, 433 (2002)CrossRefGoogle Scholar
  14. 14.
    Yan, H., Yu, S., Wang, X., He, Y., Huang, W., Yang, M.: Chem. Phys. Lett. 456, 223 (2008)CrossRefGoogle Scholar
  15. 15.
    He, J., Wu, K., Sa, R., Li, Q., Wei, Y.: Chem. Phys. Lett 475, 73 (2009)CrossRefGoogle Scholar
  16. 16.
    Pederson, M.R., Baruah, T., Allen, P.B., Schmidt, C.: J. Chem. Theory Comput. 1, 590 (2005)CrossRefGoogle Scholar
  17. 17.
    Kurtz, H.A., Stewart, J.J.P., Dieter, K.M.: J. Comput. Chem. 11, 82 (1990)CrossRefGoogle Scholar
  18. 18.
    Davia, P.J., Rabinowitz, P.: Numerical Integration, p. 166. Blaisdell, London (1967)Google Scholar
  19. 19.
    Gaussian 03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T.Jr., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A.: Gaussian, Inc., Pittsburgh, PA (2003)Google Scholar
  20. 20.
    Gaussian 09, Revision A.02, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian, Inc., Wallingford, CT (2009)Google Scholar
  21. 21.
    Jansik, B., Sałek, P., Jonsson, D., Vahtras, O., Ågren, H.: J. Chem. Phys. 122, 054107 (2005)CrossRefGoogle Scholar
  22. 22.
    Dalton, a molecular electronic structure program. Release 2.0, see http://www.kjemi.uio.no/software/dalton/dalton.html (2005)
  23. 23.
    Rinkevicius, Z., Jha, P.C., Oprea, C.I., Vahtras, O., Ågren, H.: J. Chem. Phys. 127, 114101 (2007)CrossRefGoogle Scholar
  24. 24.
    Jha, P.C., Rinkevicius, Z., Ågren, H.: ChemPhysChem. 10, 817 (2009)CrossRefGoogle Scholar
  25. 25.
    Christiansen, O.: Phys. Chem. Chem. Phys. 9, 2942 (2007)CrossRefGoogle Scholar
  26. 26.
    Hansen, M.B., Christiansen, O., Hättig, C.: J. Chem. Phys. 131, 154101 (2009)CrossRefGoogle Scholar
  27. 27.
    Bishop, D.M., Hasan, M., Kirtman, B.: J. Chem. Phys. 103, 4157 (1995)CrossRefGoogle Scholar
  28. 28.
    Luis, J.M., Duran, M., Andrés, J.L., Champagne, B., Kirtman, B.J.: Chem. Phys. 111, 875 (1999)Google Scholar
  29. 29.
    Bishop, D.M., Dalskov, E.K.: J. Chem. Phys. 104, 1004 (1996)CrossRefGoogle Scholar
  30. 30.
    Quinet, O., Champagne, B.: J. Chem. Phys. 109, 10594 (1998)CrossRefGoogle Scholar
  31. 31.
    Luis, J.M., Duran, M., Kirtman, B.: J. Chem. Phys. 115, 4473 (2001)CrossRefGoogle Scholar
  32. 32.
    Bishop, D., Kirtman, B.: J. Chem. Phys. 95, 2646 (1991)CrossRefGoogle Scholar
  33. 33.
    Bishop, D., Kirtman, B.: J. Chem. Phys. 97, 5255 (1992)CrossRefGoogle Scholar
  34. 34.
    Bishop, D., Luis, J.M., Kirtman, B.: J. Chem. Phys. 108, 10013 (1998)CrossRefGoogle Scholar
  35. 35.
    Luis, J.M., Martí, J., Duran, M., Andrés, J.L., Kirtman, B.: J. Chem. Phys. 108, 4123 (1998)CrossRefGoogle Scholar
  36. 36.
    Kirtman, B., Luis, J.M., Bishop, D.M.: J. Chem. Phys. 108, 10008 (1998)CrossRefGoogle Scholar
  37. 37.
    Zhang, M., Harding, L.B., Gray, S.K., Rice, S.A.: J. Phys. Chem. A 112, 5478 (2008)CrossRefGoogle Scholar
  38. 38.
    Hernández-Rojas, J., Bretón, J.: Gomez Lllorente, J. M. Chem. Phys. Lett. 235, 160 (1995)CrossRefGoogle Scholar
  39. 39.
    Hernández-Rojas, J.: Bretón, Gomez Lllorente, J. M. Chem. Phys. Lett. 243, 587 (1995)CrossRefGoogle Scholar
  40. 40.
    Li, Y.S., Tománek, D.: Chem. Phys. Lett. 221, 453 (1994)CrossRefGoogle Scholar
  41. 41.
    Fowler, P.W., Madden, P.A.: Phys. Rev B 30, 6131 (1984)CrossRefGoogle Scholar
  42. 42.
    Luis, J.M., Reis, H., Papadopoulos, M.G., Kirtman, B.: J. Chem. Phys. 131, 034116 (2009)CrossRefGoogle Scholar
  43. 43.
    Luis, J.M., Champagne, B., Kirtman, B.: Int. J. Quant. Chem. 80, 471 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Colloid and Water ChemistryKievUkraine

Personalised recommendations