Skip to main content

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Fullerene-based materials have attracted considerable interest since the discovery of C60. A promising area of research concerns metal–fullerene interactions and their application to advanced nano materials, with potential use in optical and switching devices, as photoconductors, and for hydrogen storage. Moreover, transition metal complexes of fullerenes show catalytic activity in homogeneous hydrogenation of acetylenic alcohols [1] and hydroformylation of alkenes [2]. In heterogeneous catalysis, exohedral metallofullerenes are found to promote hydrogenation of olefins and acetylenes [3, 4] as well as reduction of carbon monoxide to methane [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sulman, E., Matveeva, V., Semagina, N., Yanov, I., Bashilov, V., Sokolov, V.: J. Mol. Catal. 146, 257 (1999)

    Article  CAS  Google Scholar 

  2. Claridge, J., Douthwaite, R., Green, M.: J. Mol. Catal. 89, 113 (1994)

    Article  CAS  Google Scholar 

  3. Nagashima, H., Nakaoka, A., Tajima, S., Saito, Y., Itoh, K.: Chem. Lett. 7, 1361 (1992)

    Article  Google Scholar 

  4. Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M.: Saito, Y., Haga, M., Itoh, K. Chem. Lett. 7, 1207 (1994)

    Article  Google Scholar 

  5. Wohlers, M., Herzog, B., Belz, T., Bauer, A., Braun, T., Ruhle, T., Schlogl, R.: Synth. Met. 77, 55 (1996)

    Article  CAS  Google Scholar 

  6. Braun, T., Wohlers, M., Belz, T., Nowitzke, G., Wormann, G., Uchida, Y.: Pfander, N., Schlogl, R. Catal. Lett. 43, 167 (1997)

    Article  CAS  Google Scholar 

  7. Fagan, P., Calabrese, J., Malone, B.: Science 252, 1160 (1991)

    CAS  Google Scholar 

  8. Fagan, P., Calabrese, J., Malone, B.: Acc. Chem. Res. 25, 134 (1992)

    Article  CAS  Google Scholar 

  9. Bashilov, V., Petrovskii, P., Sokolov, V., Lindeman, S., Guzey, I., Struchkov, Y.: Organometallics 12, 991 (1993)

    Article  CAS  Google Scholar 

  10. Dresselhaus, M., Dresselhaus, G., Eklund, P.: Science of Fullerenes and Carbon Nanotubes. Academic press Inc., San Diego (1996)

    Google Scholar 

  11. Lerke, S.A., Evans, D.H., Fagan, P.J.: J. Am. Chem. Soc. 114, 7807 (1992)

    Article  CAS  Google Scholar 

  12. Fagan, P.J., Calabrese, J.C., Malone, B.: J. Am. Chem. Soc. 113, 9408 (1991)

    Article  CAS  Google Scholar 

  13. Talyzin, A.V., Jansson, U.: Thin Solid Films 429, 96 (2003)

    Article  CAS  Google Scholar 

  14. Fujimoto, H., Nakao, Y., Fukui, K.: J. Mol. Struct. 300, 425 (1993)

    Article  CAS  Google Scholar 

  15. Lichtenberger, D., Wright, L., Gruhn, N., Rempe, M.: J. Organomet. Chem. 478, 213 (1994)

    Article  CAS  Google Scholar 

  16. Andriotis, A., Menon, M.: Phys. Rev. 60, 4521 (1999)

    Article  CAS  Google Scholar 

  17. Alemany, M., Dieguez, O., Rey, C., Gallego, L.: J. Chem. Phys. 114, 9371 (2001)

    Article  CAS  Google Scholar 

  18. Handy, N., Cohen, A.: J. Mol. Phys. 99, 403 (2001)

    Article  CAS  Google Scholar 

  19. Dunning Jr, T.H.: J. Chem. Phys. 53, 2823 (1970)

    Article  CAS  Google Scholar 

  20. Dunning, T., Hay, P.: Methods of Electronic Structure Theory. In: Schaeffer, H. (ed.) Modern theoretical chemistry. Plenum Press, New York (1977)

    Google Scholar 

  21. Magnusson, E., Schaefer III, H.: J. Chem. Phys 83, 5721 (1985)

    Article  CAS  Google Scholar 

  22. Dolg, M., Wedig, U., Stoll, H., Preuss, H.: J. Chem. Phys. 86, 866 (1987)

    Article  CAS  Google Scholar 

  23. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H.: Theor. Chim. Acta 77, 123 (1990)

    Article  CAS  Google Scholar 

  24. Becke, A.: J. Chem. Phys. 98, 5648 (1993)

    Article  CAS  Google Scholar 

  25. Boys, S., Bernardi, F.: Mol. Phys. 19, 553 (1970)

    Article  CAS  Google Scholar 

  26. Koch, W., Holthausen, M.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  27. Hay, P.: J. Chem. Phys. 66, 4377 (1977)

    Article  CAS  Google Scholar 

  28. Moore, C.: Atomic Energy Levels. NBS, Washington (1958)

    Google Scholar 

  29. Glendening, E., Reed, A., Carpenter, J., Weinhold, F.: NBO Version 3.1. (2001)

    Google Scholar 

  30. Dapprich, S., Frenking, G.: J. Phys. Chem. 99, 9352 (1995)

    Article  CAS  Google Scholar 

  31. Gorelsky, S.I.: AOMix: Program for Molecular Orbital Analysis. York University, Toronto (1997). http://www.sg-chem.net/

  32. Gorelsky, S., Lever, A.: J. Organomet. Chem 635, 187 (2001)

    Article  CAS  Google Scholar 

  33. Hedberg, K., Hedberg, L., Bethune, D., Brown, C., Dorn, H., Johnson, R., de Vries, M.: Science 254, 410 (1991)

    Article  CAS  Google Scholar 

  34. Nunzi, F., Sgamellotti, A., Re, N., Floriani, C.: Organometallics 19, 1628 (2000)

    Article  CAS  Google Scholar 

  35. Kameno, Y., Ikeda, A., Nakao, Y., Sato, H., Sakaki, S.: J. Phys. Chem. 109, 8055 (2005)

    Article  CAS  Google Scholar 

  36. Campanera, J., Munoz, J., Vazquez, J., Bo, C., Poblet, J.: Inorg. Chem. 43, 6815 (2004)

    Article  CAS  Google Scholar 

  37. Li, J., Schreckenbach, G., Ziegler, T.: Inorg. Chem. 34, 3245 (1995)

    Article  CAS  Google Scholar 

  38. Hawkins, J., Meyer, A., Lewis, T., Loren, S., Hollander, F.: Science 252, 312 (1991)

    Article  CAS  Google Scholar 

  39. Fagan, P., Ward, M., Calabrese, J.: J. Am. Chem. Soc. 111, 1719 (1989)

    Article  Google Scholar 

  40. Haser, M., Almlof, J., Scuseria, G.: Chem. Phys. Lett. 181, 497 (1991)

    Article  CAS  Google Scholar 

  41. Morokuma, K., Borden, W.: J. Am. Chem. Soc. 113, 1912 (1991)

    Article  CAS  Google Scholar 

  42. Blomberg, M., Siegbahn, P., Svensson, M.: J. Phys. Chem. 96, 9794 (1992)

    Article  CAS  Google Scholar 

  43. Gates, B.: Catalytic Chemistry. Wiley, New York (1992)

    Google Scholar 

  44. Blomberg, M., Siegbahn, P., Nagashima, U., Wennerberg, J.: J. Am. Chem. Soc. 113, 424 (1991)

    Article  CAS  Google Scholar 

  45. Visscher, L., Dyall, K.: Atomic Data Nucl. Data Tables 67, 207 (1997)

    Article  CAS  Google Scholar 

  46. Weisshaar, J.: ACS Symp. Ser. 530, 208 (1993)

    Article  CAS  Google Scholar 

  47. Ritter, D., Weisshaar, J.: J. Am. Chem. Soc. 112, 6425 (1990)

    Article  CAS  Google Scholar 

  48. Widmark, P., Roos, B., Siegbahn, P.: J. Phys. Chem. 89, 2180 (1985)

    Article  CAS  Google Scholar 

  49. Siegbahn, P., Brandemark, U.: Theor. Chim. Acta 69, 119 (1986)

    Article  CAS  Google Scholar 

  50. Chatt, J., Duncanson, L.: J. Chem. Soc. 1953, 2939 (1953)

    Article  Google Scholar 

  51. Dewar, M.: Bull. Soc. Chim. Fr. p. 71(1951)

    Google Scholar 

  52. Massera, C., Frenking, G.: Organometallics 22, 2758 (2003)

    Article  CAS  Google Scholar 

  53. Cheng, P., Nyburg, S.: Can. J. Chem. 50, 912 (1972)

    Article  CAS  Google Scholar 

  54. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1996)

    Google Scholar 

  55. Nagashima, H., Nakaoka, A., Saito, Y., Kato, M., Kawanishi, T., Itoh, K.: The first organometallic polymer of buckminsterfullerene. J. Chem. Soc. Chem. Commun. 69, 377–379 (1992)

    Article  Google Scholar 

  56. Nagashima, H., Kato, Y., Yamaguchi, H., Kimura, E., Kawanishi, T., Kato, M.: Haga, M., Itoh, K.: Synthesis and reactions of organoplatinum compounds of \(C_{60}, C_{60}Pt_n\). Chem. Lett. 7, 1207–1210 (1994)

    Article  Google Scholar 

  57. Ivanova, V.N.: Fullerene compounds with transition metals \({\rm M}_{n}{\rm C}_{60}\): preparation, structure, and properties. J. Struct. Chem. 41, 135–148 (2000)

    Article  CAS  Google Scholar 

  58. Wohlers, M., Herzog, B., Belz, T., Bauer, A., Braun, Th, Ruhle, Th, Schlogl, R.: Ruthenium-\({\rm C}_{60}\) compounds: Properties and catalytic potential. Synth. Met. 77, 55–58 (1996)

    Article  CAS  Google Scholar 

  59. Talyzin, A.V., Jansson, U.: A comparative Raman study of some transition metal fullerides. Thin Solid Films 429, 96–101 (2003)

    Article  CAS  Google Scholar 

  60. Alemany, M.M.G., Dieguez, O., Rey, C., Gallego, L.J.: A densityfunctional study of the structures and electronic properties of \(C_{59}\)Ni and \(C_{60}\)Ni clusters. J. Chem. Phys. 114, 9371–9374 (2001)

    Article  CAS  Google Scholar 

  61. Andriotis, A.N., Menon, M.: Geometry and bonding in small (\(C_{60})_nNi_m\) clusters. Phys. Rev. B 60, 4521–4524 (1999)

    Article  CAS  Google Scholar 

  62. Nagashima, H., Yamaguchi, H., Kato, Y., Saito, Y., Haga, M., Itoh, K.: Facile cleavage of carbon-palladium bonds in \(C_{60}Pd_n\) with phosphines and phosphites. An alternative route to (\(\eta ^{2}-C_{60})PdL_{2}\) and discovery of fluxionarity suggesting the rotation of \(C_{60}\) on the \(PdL_2\) species in solution. Chem. Lett. 12, 2153–2156 (1993)

    Article  Google Scholar 

  63. Nagashima, H., Nakaoka, A., Tajima, S., Saito, Y., Itoh, K.: Catalytic hydrogenation of olefins and acetylenes over \({\rm C}_{60}{\text{ Pd}}_n\). Chem. Lett. 377, 1361–1364 (1992)

    Article  Google Scholar 

  64. Andrae, D., Haeussermann, U., Dolg, M., Stoll, H., Preuss, H.: Energyadjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 77, 123–141 (1990)

    Article  CAS  Google Scholar 

  65. Sparta, M., Jensen, V.R., Borve, K.J.: Structure and stability of substitutional metallofullerenes of the first-row transition metals. Fuller. Nanotub. Carb. Nanostruct. 14(2–3), 269–278 (2006)

    Article  CAS  Google Scholar 

  66. Hedberg, K., Hedberg, L., Bethunde, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., Devries, M.: Bond lengths in free molecules of buckminsterfullerene, \(C_{60}\), from gas-phase electron-diffraction. Science 254, 410–412 (1991)

    Article  CAS  Google Scholar 

  67. Chatt, J., Duncanson, L.A.: Olefin co-ordination compounds 3. Infrared spectra and structure-attempted preparation of acetylene complexes. J. Chem. Soc. 28, 2939–2947 (1953)

    Article  Google Scholar 

  68. Dewar, M.J.S.: A review of the \(\pi \)-complex theory. Bull. Soc. Chim. Fr. 18, C71–79 (1951)

    Google Scholar 

  69. Lin, S.S., Strauss, B., Kant, A.: Dissociation energy of \({\text{ Pd}}_2\). J. Chem. Phys. 51, 2282–2283 (1969)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Loboda .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loboda, O. (2012). Exohedral Metallofullerenes. In: Quantum-chemical studies on Porphyrins, Fullerenes and Carbon Nanostructures. Carbon Nanostructures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31845-0_2

Download citation

Publish with us

Policies and ethics