Advertisement

Component Random Walk

  • Xiaohua Xu
  • Ping He
  • Lin Lu
  • Zhoujin Pan
  • Ling Chen
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

Label propagation has become a successful method for transductive learning. In this paper, we propose a unified label propagation model named Component Random Walk. We demonstrate that besides most of the existing label propagation algorithms, a novel Multilevel Component Propagation (MCP) algorithm can be derived from this Component Random Walk model as well. Promising experimental results are provided for MCP algorithm.

Keywords

Transductive Learning Label Propagation Random Walk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chapelle, A.Z.: Semi-supervised Classification by Low Density Separation. In: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (2005)Google Scholar
  2. 2.
    Joachims, T.: Transductive Inference for Text Classification using Support Vector Machines. In: Proc. 16th International Conf. on Machine Learning, pp. 200–209 (1999)Google Scholar
  3. 3.
    Weston, J., Leslie, C.S., Ie, E., Zhou, D., Elisseeff, A., Noble, W.S.: Semi-supervised Protein Classification using Cluster Kernels. BioinformaticsGoogle Scholar
  4. 4.
    Joachims, T.: Transductive Learning via Spectral Graph Partitioning. In: Proceedings of ICML 2003, 20th International Conference on Machine Learning (2003)Google Scholar
  5. 5.
    Kemp, C., Griffiths, T., Stromsten, S., Tenenbaum, J.: Semi-supervised Learning with Trees. In: Advances in Neural Information Processing System 16 (2003)Google Scholar
  6. 6.
    Belkin, M., Niyogi, P., Sindhwani, V.: Manifold Regularization: A Geometric Framework for Learning from Examples. Tech. rep., University of Chicago (2004)Google Scholar
  7. 7.
    Szummer, M., Jaakkola, T.: Partially Labeled Classification with Markov Random Walks. In: Advances in Neural Information Processing Systems 14 (2001)Google Scholar
  8. 8.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised Learning using Gaussian Fields and Harmonic Functions. In: The 20th International Conference on Machine Learning, ICML (2003)Google Scholar
  9. 9.
    Zhou, D., Bousquet, O., Lal, T., Weston, J., Schöelkopf, B.: Learning with Local and Global Consistency. In: Advances in Neural Information Processing System 16 (2004)Google Scholar
  10. 10.
    Azran: The rendezvous algorithm: Multiclass Semi-supervised Learning with Markov Random Walks. In: The 24th International Conference on Machine Learning (2007)Google Scholar
  11. 11.
    Wang, J., Jebara, T., Chang, S.-F.: Graph Transduction via Alternating Minimization. In: ICML 2008: Proceedings of the 25th International Conference on Machine Learning, pp. 1144–1151. ACM, New York (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaohua Xu
    • 1
  • Ping He
    • 1
  • Lin Lu
    • 1
  • Zhoujin Pan
    • 1
  • Ling Chen
    • 1
  1. 1.Department of Computer ScienceYangzhou UniversityYangzhouChina

Personalised recommendations