Advertisement

Interactive Evolutionary Algorithms with Decision-Maker’s Preferences for Solving Interval Multi-objective Optimization Problems

  • Dunwei Gong
  • Xinfang Ji
  • Jing Sun
  • Xiaoyan Sun
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

Multi-objective optimization problems (MOPs) with interval parameters are considerably popular and important in real-world applications. A novel evolutionary algorithm incorporating with a decision-maker (DM)’s preferences is presented to obtain their Pareto subsets which meet the DM’s preferences in this study. The proposed algorithm is applied to four MOPs with interval parameters and compared with other two algorithms. The experimental results confirm the advantages of the proposed algorithm.

Keywords

Multi-objective optimization Evolutionary algorithm Interval Decision-maker’s preferences Relative importance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gong, D.W., Qin, N.N., Sun, X.Y.: Evolutionary Algorithms for Multi-objective Optimization Problems with Interval Parameters. In: 5th IEEE International Conference on Bio-Inspired Computing: Theories and Applications, pp. 411–420 (2010)Google Scholar
  2. 2.
    Yang, D.D., Jiao, L.C., Gong, M.G., Yu, H.: Clone Selection Algorithm to Solve Prefer-ence Multi-objective Optimization. Journal of Software 21, 14–33 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Luque, M., Miettinen, K., Eskelinen, P., Ruiz, F.: Incorporating Preference Information in Interactive Reference Point Methods for Multiobjective Optimization. Omega 37, 450–462 (2009)CrossRefGoogle Scholar
  4. 4.
    Rachmawati, L., Srinivasan, D.: Incorporating the Notion of Relative Importance of Ob-jectives in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolution-ary Computation 14, 530–546 (2010)CrossRefGoogle Scholar
  5. 5.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, 173–195 (2000)CrossRefGoogle Scholar
  6. 6.
    Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Test Problems for Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolution-ary Mul-tiobjective Optimization: Theoretical Advances and Applications, pp. 105–145. Springer, New York (2005)Google Scholar
  7. 7.
    Limbourg, P., Aponte, D.E.: An Optimization Algorithm for Imprecise Multi-objective Problem Functions. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 459–466. IEEE Press, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dunwei Gong
    • 1
  • Xinfang Ji
    • 1
  • Jing Sun
    • 1
  • Xiaoyan Sun
    • 1
  1. 1.School of Information and Electrical EngineeringChina University of Mining and TechnologyXuzhouChina

Personalised recommendations