Efficient Mode of Action Identification by Support Vector Machine Regression

  • Vitoantonio Bevilacqua
  • Paolo Pannarale
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)


Discovering the molecular targets of compounds or the cause of physiological conditions, among the multitude of known genes, is one of the major challenges of bioinformatics. Our approach has the advantage of not needing control samples, libraries or numerous assays. The so far proposed implementations of this strategy are computationally demanding. Our solution, while performing comparably to state of the art algorithms in terms of discovered targets, is more efficient in terms of memory and time consumption.


Action Identification Support Vector Machine Regression Correlation Base Feature Selection Thetic Process Gene Ontology Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mukesh, B., Vincenzo, B., Alberto, A.I., Diego, d.B.: How to Infer Gene Networks from Expression Profiles. Mol. Syst. Biol. 3, 78 (2007)Google Scholar
  2. 2.
    Elissa, J.C., Zhou, Y.C., Timothy, S.G., Eric, D.K.: Predicting Gene Targets of Perturbations via Network-based Filtering of MRNA Expression Compendia. Bioinformatics (Oxford, England) 24(21), 2482–2490 (2008)CrossRefGoogle Scholar
  3. 3.
    Diego, d.B., Michael, J.T., Timothy, S.G., Sarah, E.C., Erin, L.E., Andrew, P.W., Sean, J.E., Scott, E.S., James, J.C.: Chemogenomic Profiling on a Genome-wide Scale Using Reverse-Engineered Gene Networks. Nature Biotechnology 23(3), 377–383 (2005)CrossRefGoogle Scholar
  4. 4.
    Hall, M.A.: Correlation-based Feature Selection for Machine Learning. PhD thesis. The University of Waikato (1999)Google Scholar
  5. 5.
    Hughes, T.R., Marton, M.J., Jones, A.R., Roberts, C.J., Stoughton, R., Armour, C.D., Bennett, H.A., Coffey, E., Dai, H., He, Y.D., Kidd, M.J., King, A.M., Meyer, M.R., Slade, D., Lum, P.Y., Stepaniants, S.B., Sho Emaker, D.D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., Friend, S.H.: Functional discovery via a compendium of expression profiles. Cell 102(1), 109–126 (2000)CrossRefGoogle Scholar
  6. 6.
    Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to platt’s smo algorithm for svm classifier design. Neural Computation 13(3), 637–649 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Mnaimneh, S., Davierwala, A.P., Haynes, J., Maffat, J., Peng, W.-T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan, N.J., Hiley, S.L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, C.J., Greenblatt, J.F., Boone, C., Kaiser, C.A., Andrews, B.J., Hughes, T.R.: Exploration of essential gene functions via titratable promoter alleles. Cell 118(1), 31–44 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vitoantonio Bevilacqua
    • 1
    • 2
  • Paolo Pannarale
    • 1
  1. 1.Dipartimento di Elettrotecnica ed ElettronicaPolitecnico di BariBariItaly
  2. 2.eBisBariItaly

Personalised recommendations