Advertisement

Predicting Binding-Peptide of HLA-I on Unknown Alleles by Integrating Sequence Information and Energies of Contact Residues

  • Fei Luo
  • Yangyang Gao
  • Yongqiong Zhu
  • Juan Liu
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

The human MHC class I system is extremely polymorphic and now the registered number of HLA-I molecules has exceeded 3000. These HLAs have slightly different amino acid sequences, which makes them potentially bind to different sets of peptides. In order to overcome the problems existing in current methods and take into account the MHC sequence and energies of contact residues information, in this paper a method based on artificial neural network is proposed to predict peptides binding to HLAs on unknown alleles with limited or even no prior experimental data. The super-type experiments are implemented to validate our method. In the experiment, we collected 14 HLA-A and 14 HLA-B molecules on Bjoern Peters dataset and did leave-one-out cross-validation on MHC-peptide binding data with different alleles but sharing the same super-type, our method got the best average AUC value as 0.846 compared to gold standard methods such as NetMHC and NetMHCpan.

Keywords

peptide HLA artificial neural network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudensky, A., Preston-Hurlburt, P., Al-Ramadi, B.K., Rothbard, J., Janeway, C.A.: Truncation Variants of Peptides Isolated From Mhc Class Ii Molecules Suggest Sequence Motifs. Nature 359, 429–431 (1992)CrossRefGoogle Scholar
  2. 2.
    Cole, G.A., Tao, T., Hogg, T.L., Ryan, K.W., Woodland, D.L.: Binding Motifs Predict Major Histo-Com Patibility Complex Class Ii-Restricted Epitopes in The Sendai Virus M Protein. J. Virol. 69, 8057–8060 (1995)Google Scholar
  3. 3.
    Rammensee, H., Bachmann, J., Emmerich, N.P., Stevanovic, S.: SYFPEITHI: Database for Mhc Ligands And Peptide Motif. Immunogenetics 50, 213–219 (1999)CrossRefGoogle Scholar
  4. 4.
    Doytchinova, I.A., Blythe, M.J., Flower, D.R.: Additive Methods for the Prediction of Protein-Peptide Binding Affinity. Application to the mhc class i Molecules hla-a*0201. J. Proteome Res. 1, 263–272 (2002)CrossRefGoogle Scholar
  5. 5.
    Jain, A.K., Mao, J., Mohiuddin, K.M.: Atificial Neural Networks: A Turorial. IEEE Computer 29, 31–44; [55] Rudy, G., Harrison, L.C., Brusic, V.: MHCPEP: a database of MH C-binding peptides. Nucleic Acids Res. 25, 269–271 (1997)Google Scholar
  6. 6.
    Zhu, S., Udaka, K., Sidney, J., Sette, A., Aoki-Kinoshita, K.F., et al.: Improving MHC Binding Peptide Prediction By Incorporating Binding Data of Auxiliary Mhc Molecules. Bioinformatics 22, 1648–1655 (2006)CrossRefGoogle Scholar
  7. 7.
    Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.A., Mothe, B.R., Chisari, F.V., Watkins, D.I., Sette, A.: Automated Generation and Evaluation of Specific Mhc Binding Predictive Tools: ARB Matrix Applications. Immunogenetics 57, 304–314 (2005)CrossRefGoogle Scholar
  8. 8.
    Peters, B., Tong, W., Sette, A., Weng, Z.: Examining the Independent Binding Assump-tion for Binding of Peptide Epitopes to MHC-I Molecules. Bioinformatics 19, 1765–1772 (2003)CrossRefGoogle Scholar
  9. 9.
    Wen, Z., Juan, L., Yan, Q., Lian, W., Xihao, H.: Bayesian Regression Approach To The Prediction of Mhc-Ii Binding Affinity. Computer Methods and Programs in Biomedicine 92, 1–7 (2008)CrossRefGoogle Scholar
  10. 10.
    Zhang, C., Bickis, M.G., Wu, F.X., Kusalik, A.J.: Optimally Connected Hidden Markov Models For Predicting Mhc-Binding Peptides. J. Bioinform. Comput. Biol. 4, 959–980 (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, W., Meng, X., Xu, Q., Flower, D.R., Li, T.: Quantitative Prediction Of Mouse Class I Mhc Peptide Binding Affinity Using Support Vector Machine Regression (Svr) Models. BMC Bioinformatics 7, 182–189 (2006)CrossRefGoogle Scholar
  12. 12.
    Buus, S., Lauemøller, S.L., Worning, P., Kesmir, C., Frimurer, T., et al.: Sensitive Quantitative Predictions Of Peptide-Mhc Binding By A Query By Committee Artificial Neural Network Approach. Tissue Antigens 62, 378–384 (2003)CrossRefGoogle Scholar
  13. 13.
    Madden, D.R.: The Three-Dimensional Structure of Peptide-Mhc Complexes. Annu. Rev. Immunol. 13, 587–622 (1995)CrossRefGoogle Scholar
  14. 14.
    Miyazawa, S., Jernigan, R.L.: Estimation of Effective Interresidue Contact Energiesfrom Protein Crystal Structures: Quasi-Chemical Approximation Macromolecules 18534 (1985)Google Scholar
  15. 15.
    Betancourt, M.R., Thirumalai, D.: air Potentials For Protein Folding: Choice of Referencestates and Sensitivity of Predicted Native Statesto Variations In The Interaction Schemes. Protein Sci. 8, 361–369 (1999)CrossRefGoogle Scholar
  16. 16.
    Sette, A., Sidney, J.: Ninemajor HLA Class I Supertypesaccount for the Vast Preponderance of HLA-A and-B Polymorphism. Immunogenetics 50, 201–212 (1999)CrossRefGoogle Scholar
  17. 17.
    Nielsen, M.: NetMHCpan, A Method For Quantitative Predictionsof Peptide Bindingto Any Hla-A And -B Locus Protein of Known Sequence. PLoS ONE, 2, e796 (2007)Google Scholar
  18. 18.
    Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S.L., Lamberth, K., Buus, S., Brunak, S., Lund, O.: Reliable Prediction of T-Cell Epitopes Using Neural Networks With Novel Sequence Representations. Protein Sci 12, 1007–1017 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fei Luo
    • 1
  • Yangyang Gao
    • 1
  • Yongqiong Zhu
    • 1
  • Juan Liu
    • 1
  1. 1.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations