Advertisement

Locating Tandem Repeats in Weighted Biological Sequences

  • Hui Zhang
  • Qing Guo
  • Costas S. Iliopoulos
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

A weighted biological sequence is a string in which a set of characters may appear at each position with respective probabilities of occurrence. We attempt to locate all the tandem repeats in a weighted sequence. By introducing the idea of equivalence classes in weighted sequences, we identify the tandem repeats of every possible length using an iterative partitioning technique, and present the O(n 2) time algorithm.

Keywords

Weighted sequence tandem repeat equivalence class equivalence relation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apostolico, A., Prepamta, F.P.: Optimal Off-line Detection of Repetitions in a string. Theoretical Computer Science 22, 297–315 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Christodoulakis, M., Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A., Tsichlas, K.: Computation of Repetitions and Regularities on Biological Weighted Sequences. Journal of Computational Biology 13(6), 1214–1231 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Crochemore, M.: An Optimal Algorithm for Computing the Repetitions in a Word. Information Processing Letter 12(5), 244–250 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Franêk, F., Smyth, W.F., Tang, Y.: Computing All Repeats Using Suffix Arrays. Journal of Automata, Languages and Combinatorics 8(4), 579–591 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  6. 6.
    Iliopoulos, C.S., Makris, C., Panagis, Y., Perdikuri, K., Theodoridis, E., Tsakalidis, A.: Efficient Algorithms for Handling Molecular Weighted Sequences. IFIP Theoretical Computer Science 147, 265–278 (2004)Google Scholar
  7. 7.
    Iliopoulos, C.S., Mouchard, L., Perdikuri, K., Tsakalidis, A.: Computing the Repetitions in a Weighted Sequence. In: Proc. of the 8th Prague Stringology Conference (PSC 2003), pp. 91–98 (2003)Google Scholar
  8. 8.
    Main, M.G., Lorentz, R.J.: An O(nlngn) Algorithm for Finding All Repetitions in a String. Journal of Algorithms 5, 422–432 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches. SIAM Journal on Computing 22(5), 935–948 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ohno, S.: Repeats of Base Oligomers as the Primordial Coding Sequences of the Primeval Earth and Their Vestiges in Modern Genes. Journal of Molecular Evolution 20, 313–321 (1984)CrossRefGoogle Scholar
  11. 11.
    Stoye, J., Gusfield, D.: Simple and Flexible Detection of Contiguous Repeats Using a Suffix Tree. In: Farach-Colton, M. (ed.) CPM 1998. LNCS, vol. 1448, pp. 140–152. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Guo, Q., Iliopoulos, C.S.: Loose and Strict Repeats in Weighted Sequences. Protein and Peptide Letters 17(9), 1136–1142 (2010)CrossRefGoogle Scholar
  13. 13.
    The Human Genome Project(HGP), http://www.nbgri.nih.gov/HGP/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hui Zhang
    • 1
  • Qing Guo
    • 2
  • Costas S. Iliopoulos
    • 3
  1. 1.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.College of Computer ScienceZhejiang UniversityHangzhouChina
  3. 3.Department of Computer ScienceKing’s College London StrandLondonEngland

Personalised recommendations