Advertisement

A Comparative Study of Two Independent Component Analysis Using Reference Signal Methods

  • Jian-Xun Mi
  • Yanxin Yang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)

Abstract

Independent Component Analysis (ICA) using reference signal is a useful tool for extracting a desired independent component (IC). Reference signal is served asa priori information to conduct ICA to converge to the local extreme point related to a desired IC. There are two methods can perform ICA using reference signal, namely ICA with reference (ICA-R) and fast ICA with reference signal (FICAR). In this paper, we present a comparative assessment of the two methods to highlight their respective characteristics.

Keywords

Independent component analysis ICA-R FICAR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lu, W., Rajapakse, J.C.: Approach and Applications of Constrained ICA. IEEE Transactions on Neural Networks 16, 203–212 (2005)CrossRefGoogle Scholar
  2. 2.
    Lu, W., Rajapakse, J.C.: ICA with Reference. Neurocomputing 69, 2244–2257 (2006)CrossRefGoogle Scholar
  3. 3.
    Barros, A.K., Vigario, R., Jousmaki, V., et al.: Extraction of Event-related Signals from Multichannel Bioelectrical Measurements. IEEE Transactions on Bio-Medical Engineering 475, 583–588 (2000)CrossRefGoogle Scholar
  4. 4.
    Barros, A.K., Principe, J.C., Erdogmus, D.: Independent Component Analysis and Blind Source Separation. Signal Processing 87, 1817–1818 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hyvarinen, A., Oja, E.: A Fast Fixed-point Algorithm for Independent Compo-nent Analysis. Neural Computation 9, 1483–1492 (1997)CrossRefGoogle Scholar
  6. 6.
    Hyvarinen, A.: Fast and Robust Fixed-point Algorithms for Independent Com-ponent Analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)CrossRefGoogle Scholar
  7. 7.
    Huang, D.S., Mi, J.X.: A new constrained independent component analysis method. IEEE Transactions on Neural Networks 18, 1532–1535 (2007)CrossRefGoogle Scholar
  8. 8.
    Khan, O.I., Farooq, F., Akram, F., Choi, M.T., Han, S.M., Kim, T.S.: Robust extraction of P300 using constrained ICA for BCI applications. Med. Biol. Eng. Comput. 50, 231–241 (2012)CrossRefGoogle Scholar
  9. 9.
    Spasić, S., Nikolić, L., Mutavdžić, D., Šaponjić, J.: Independent Complexity Patterns in Single Neuron Activity Induced by Static Magnetic Field. Computer Methods and Programs in Biomedicine 104, 212–218 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jian-Xun Mi
    • 1
    • 2
  • Yanxin Yang
    • 3
  1. 1.Bio-Computing Research CenterShenzhen Graduate School, Harbin Institute of TechnologyShenzhenChina
  2. 2.Key Laboratory of Network Oriented Intelligent ComputationShenzhenChina
  3. 3.Faculty of Engineering and TechnologyYunnan Agriculture UniversityKunmingChina

Personalised recommendations