Oscillation Analysis for a Recurrent Neural Network Model with Distributed Delays

  • Chunhua Feng
  • Zhenkun Huang
Part of the Communications in Computer and Information Science book series (CCIS, volume 304)


In this paper, oscillatory behavior of the solutions for a three-note recurrent neural network model with distributed delays and a strong kernel is investigated. Two simple and practical criteria to guarantee the oscillations of the solutions for the system are derived. Some numerical simulations are given to justify our theoretical analysis result.


three-note network model distributed delay strong kernel oscillation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, S., Zhang, Q., Wang, C.: Existence and Stability of Equilibria of the Continuous-Time Hopfield Neural Network. J. Comput. Appl. Math. 169, 117–125 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Shen, Y., Yu, H., Jian, J.: Delay-dependent Global Asymptotic Stability for Delayed Cellular Neural Networks. Commun. Nonlinear Sci. Numer. Simulat. 14, 1057–1063 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Wei, X., Xu, J.: Delay-dependent Global Stability Condition for Delayed Hopfield Neural Networks. Nonlinear Analysis, RWA 8, 997–1002 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Shen, Y., Wang, J.: An Improved Algebraic Criterion for Global Exponential Stability of Recurrent Neural Networks with Time-Varying Delays. IEEE Trans. Neural Networks 19, 528–531 (2008)CrossRefGoogle Scholar
  5. 5.
    Cao, J., Wang, L.: Global Exponential Stability And Periodicity of Recurrent Neural Networks with Time Delays. IEEE Trans. Circuits Syst. 52, 920–931 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liu, B., Huang, L.: Existence and Exponential Stability of Almost Periodic Solutions for Hopfield Neural Networks with Delays. Neurocomputing 68, 196–207 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, Y., You, Z., Cao, L.: On the Almost Periodic Solution of Generalized Hopfield Neural Networks with Time-Varying Delays. Neurocomputing 69, 1760–1767 (2006)CrossRefGoogle Scholar
  8. 8.
    Li, J., Yang, J., Wu, W.: Stability and Periodicity of Discrete Hopfield Neural Networks with Column Arbitrary-Magnitude-Dominant Weight Matrix. Neurocomputing 82, 52–61 (2012)CrossRefGoogle Scholar
  9. 9.
    Liao, X., Wong, K., Wu, Z.: Bifurcation Analysis on A Two-Neuron System with Distributed Delays. Physica D 149, 123–141 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Zhao, H., Wang, L., Ma, C.: Hopf Bifurcation and Stability Analysis on Discrete-Time Hopfield Neural Network With Delay. Nonlinear Analysis: RWA 9, 103–113 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Liao, X., Li, S., Chen, G.: Bifurcation Analysis on A Two-Neuron System with Distributed Delays in The Frequency Domain. Neural Networks 17, 545–561 (2004)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hajihosseini, A., Lamooki, G.R.R., Beheshti, B., Maleki, F.: The Hopf Bifurcation Analysis on A Time-Delayed Recurrent Neural Network in the Frequency Domain. Neurocomputing 73, 991–1005 (2010)CrossRefGoogle Scholar
  13. 13.
    Chafee, N.: A Bifurcation Problem for A Functional Differential Equation of Finitely Retarded Type. J. Math. Anal. Appl. 35, 312–348 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Gyori, I., Lades, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Chunhua Feng
    • 1
  • Zhenkun Huang
    • 2
  1. 1.College of Mathematical ScienceGuangxi Normal UniversityGuilinChina
  2. 2.Department of MathematicsJimei UniversityXiamenChina

Personalised recommendations