Advertisement

Preliminary Evaluation and Applications of a Consistent Hybrid LES/RANS Method

  • Heng XiaoEmail author
  • Michael Wild
  • Patrick Jenny
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)

Abstract

In this work, we introduce a recently proposed framework for hybrid LES/RANS modeling and its preliminary applications on simple flows. In this framework, the filtered and Reynolds averaged Navier-Stokes (RANS) equations are solved simultaneously in the whole domain. The novelty of the framework is the dual-solution approach and the consistency between the two solutions achieved via additional drift terms. A hybrid LES/RANS solver is developed within this framework and used to simulate flows in a plane channel and flows in a channel with periodic hills. The results demonstrate that the hybrid solver leads to significantly improved results compared to traditional LES on the same grid.

Keywords

RANS Model Drift Force RANS Equation RANS Region Hybrid Solver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fröhlich, J., von Terzi, D.: Progress in Aerospace Sciences 44(5), 349 (2008)CrossRefGoogle Scholar
  2. 2.
    Baggett, J.S.: Annual Research Briefs (Center for Turbulence Research, 1998), pp. 267–277 (1998)Google Scholar
  3. 3.
    Xiao, H., Jenny, P. (submitted, 2011)Google Scholar
  4. 4.
    Labourasse, E., Sagaut, P.: Journal of Computational Physics 182, 301 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    OpenCFD Ltd. The open source CFD toolbox, www.openfoam.com
  6. 6.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: Computers in Physics 12(6), 620 (1998), doi:10.1063/1.168744CrossRefGoogle Scholar
  7. 7.
    Yoshizawa, A., Horiuti, K.: Journal of Physical Society of Japan 54, 2834 (1985)CrossRefGoogle Scholar
  8. 8.
    Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: Physics of Fluids 9(5) (1997)Google Scholar
  9. 9.
    Launder, B.E., Sharma, B.I.: Letters in Heat and Mass Transfer 1(2), 131 (1974)CrossRefGoogle Scholar
  10. 10.
    Davidson, L.: International Journal of Heat and Fluid Flow 30, 1016 (2009)CrossRefGoogle Scholar
  11. 11.
    Davidson, L.: In: Quality and Reliability of Large-Eddy Simulations II, pp. 269–286. Springer (2010)Google Scholar
  12. 12.
    Moser, R.D., Kim, J.D., Mansour, N.N.: Physics of Fluids 11, 943 (1999)zbMATHCrossRefGoogle Scholar
  13. 13.
    AGARD, A selection of test cases for the validation of large-eddy simulations of turbulent flows. Tech. Rep. 345, AGARD Advisory Report (1998)Google Scholar
  14. 14.
    Almeida, G.P., Durao, D.F.G., Heitor, M.V.: Experimental Thermal and Fluid Science 7(1), 87 (1993)CrossRefGoogle Scholar
  15. 15.
    Saric, S., Jakirlic, S., Breuer, M., Jaffrezic, B., Deng, G., Chikhaoui, O., Fröhlich, J., von Terzi, D., Manhart, M., Peller, N.: In: Proceedings of ESAIM, vol. 16, pp. 133–145 (2007), doi:10.1051/proc:2007016Google Scholar
  16. 16.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Computers & Fluids 38(2), 433 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Fluid DynamicsETH ZürichZürichSwitzerland

Personalised recommendations