Delayed-Detached-Eddy Simulation of Near-Stall Axial Compressor Flow with Varying Passage Numbers

  • Ruben van RenningsEmail author
  • Ke Shi
  • Song Fu
  • Frank Thiele
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)


For highly loaded compressor blades a significant improvement in performance prediction of hybrid RANS-LES methods compared to widely used RANS methods has been observed. The flow in an axial compressor close to stall conditions is simulated by DDES calculations on two different geometrical models to investigate the influence imposing periodicity of different domain sizes on the flow. Time traces of integral forces are compared for both configurations. Time averaged results of the simulations are compared to experiments. It is found that the direct periodicity of the one blade domain damps important features of the separated flow. This is expected to be particularly relevant to the phenomenon of Rotating Instability.


Compressor Blade Inlet Guide Vane Compressor Cascade Integral Force Vary Passage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Bogey, C., Bailly, C.: Three-dimensional non-reflective boundary conditions for acoustic simulation: far field formulation and validation test cases. Acta Acustica 88, 463–471 (2002)Google Scholar
  3. 3.
    Ferziger, J.H., Perić, M.: Numerische Strömungsmechanik. Springer (2008)Google Scholar
  4. 4.
    Garbaruk, A., Shur, M., Strelets, M., Travin, A.: Detached-eddy simulation of a linear compressor cascade with tip gap and moving wall. In: The Hybrid RANS-LES Symposium, Stockholm, July 14-15 (2005),
  5. 5.
    Haase, W., Aupoix, B., Bunge, U., Schwamborn, D. (eds.) FLOMANIA - A European initiative on flow physics modelling. NNFM, vol. 94. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Haase, W., Braza, M., Revell, A. (eds.): DESider – A European Effort on Hybrid RANS-LES Modelling. NNFM, vol. 103. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Kameier, F., Neise, W.: Rotating blade flow instability as a source of noise in axial turbomachines. Journal of Sound and Vibration 203(5), 833–853 (1997)CrossRefGoogle Scholar
  8. 8.
    Mockett, C.: A comprehensive study of detached-eddy simulation. Dissertation, TU Berlin (2009)Google Scholar
  9. 9.
    Patankar, S., Spalding, D.: A calculation procedure for heat, mass and momentum transfer in three–dimensional parabolic flow. International Journal of Heat and Mass Transfer 15, 1787–1806 (1972)zbMATHCrossRefGoogle Scholar
  10. 10.
    Pope, S.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  11. 11.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal 27, 1325–1332 (1983)Google Scholar
  12. 12.
    Spalart, P.: Young-person’s guide to detached-eddy simulation grids. Tech. rep., NASA Langley Research Center (2001)Google Scholar
  13. 13.
    Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: Proceedings of the 30th AIAA Aerospace Sciences Meeting and Exhibit. (1992)Google Scholar
  14. 14.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K., Strelets, M.K., Travin, A.K.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and Computational Fluid Dynamics 20, 181–195 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Steger, M., van Rennings, R., Gmelin, C., Thiele, F., Huppertz, A., Swoboda, M.: Detached-eddy simulation of a highly loaded compressor cascade with laminar separation bubble. In: European Turbomachinery Conference (2010)Google Scholar
  16. 16.
    Stone, H.: Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM Journal on Numerical Analysis 5(3), 530–558 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Travin, A., Shur, M., Strelets, M., Spalart, P.R.: Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows. In: Friedrich, R., Rodi, W. (eds.) Advances in LES of Complex Flows. Fluid Mechanics and Its Applications, vol. 65, pp. 239–254. Springer, Netherlands (2004)CrossRefGoogle Scholar
  18. 18.
    Ulbricht, I.: Stabilität des stehenden Ringgitters. Dissertation, TU Berlin (2001)Google Scholar
  19. 19.
    Ulbricht, I., Hourmouziadis, J.: Stabilität des verzögernden Ringgitters. In: Abschlussbericht AG-Turbo Teil-Verbundprojekt Turbotech 2, Vorhaben-Nr. 1.271 (2000)Google Scholar
  20. 20.
    Weber, A.: G3DMESH v4.5.4. Tech. rep., German Aerospace Center, Institute of Propulsion Technology, Numerical Methods Department, Cologne (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ruben van Rennings
    • 1
    Email author
  • Ke Shi
    • 2
  • Song Fu
    • 2
  • Frank Thiele
    • 1
  1. 1.Department of Fluid Dynamics and Engineering AcousticsTechnische Universität BerlinBerlinGermany
  2. 2.School of AerospaceTsinghua UniversityBeijingP.R. China

Personalised recommendations