Hybrid RANS/LES Simulations of a Three-Element Airfoil

  • S. Reuß
  • T. Knopp
  • D. Schwamborn
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)


In this paper the Spalart-Allmaras based Delayed Detached Eddy Simulation (DDES [1]) and Improved Delayed Detached Eddy Simulation (IDDES [2]) are used to simulate the flow about an industrially relevant airfoil-configuration with deployed high-lift devices. Here, the potential advantage of the computationally very challenging hybrid approaches over pure RANS simulations in the case of incipient separation is investigated.


Shear Layer Turbulent Kinetic Energy Vortical Structure Turbulent Shear Stress RANS Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities. Theoretical and Computational Fluid Dynamics 20(3), 181–195 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow 29(6), 1638–1649 (2008)CrossRefGoogle Scholar
  3. 3.
    Wild, J., Pott-Pollenske, M.: An integrated design approach for low noise exposing high-lift devices. AIAA Paper, no. 3101 (2009)Google Scholar
  4. 4.
    Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: recent applications in reaserach and industry. In: Wesseling, P., Oñate, E., Périaux, J. (eds.) Proceedings of ECCOMAS CFD 2006, The Netherlands, TU Delft (2006),
  5. 5.
    Schwamborn, D., Gardner, A., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Develop-ment of the TAU-Code for aerospace applications. In: 50th NAL International Conference on Aerospace Science and Technology (2008),
  6. 6.
    Melber-Wilkending, S.: Aerodynamics of the Wing/Fuselage Junction at an Transport Aircraft in High-lift Configuration. In: 16th AG STAB/DGLR Symposium (2008)Google Scholar
  7. 7.
    Rudnik, R.: Stall Behaviour of the EUROLIFT High Lift Configurations. AIAA Paper, no. 836 (2008)Google Scholar
  8. 8.
    Crippa, S., Melber-Wilkending, S., Rudnik, R.: DLR Contribution to the First High Lift Prediction Workshop. AIAA Paper, no. 938 (2011),
  9. 9.
    Schwamborn, D., Strelets, M.K.: ATAAC – an EU-Project Dedicated to Hybrid RANS/LES Methods. Invited paper at 4th Symposium on Hybrid RANS/LES Methods, Beijing. Proceedings to appear in Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer (September 2011)Google Scholar
  10. 10.
    Lockard, D.P., Choudhari, M.M.: Noise Radiation from a Leading-Edge Slat. AIAA Paper, no. 3101 (2009)Google Scholar
  11. 11.
    Krumbein, A., Krimmelbein, N.: Navier-Stokes High-Lift Airfoil Computations with Automatic Transition Prediction using the DLR TAU Code. In: New Results in Numerical and Experimental Fluid Mechanics VI. NNFM, vol. 96, pp. 210–218. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Jakubek, D.: Parameterstudien für numerische RANS- und DES-Verfahren für ein Drei-Element-Profil in Hochauftriebskonfiguration mit dem DLR TAU-Code. DLR-IB 224-2010 A39 (2010)Google Scholar
  13. 13.
    Deck, S.: Zonal-Detached-Eddy Simulation of the Flow Around a High-Lift Configuration. AIAA Journal 43(11), 2372–2384 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Reuß
    • 1
  • T. Knopp
    • 1
  • D. Schwamborn
    • 1
  1. 1.Institute of Aerodynamics and Flow TechnologyDLR (German Aerospace Center)GöttingenGermany

Personalised recommendations