Noise Control of Supersonic Cavity Flow with Upstream Mass Blowing

  • Weipeng LiEmail author
  • Taku Nonomura
  • Kozo Fujii
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 117)


The mechanism and efficiency of noise control in supersonic cavity flows with steady upstream mass blowing are numerically investigated. A slotted jet is placed in the upside of cavity leading edge. The mass blowing is simulated by specifying a vertical velocity ejecting through the slotted jet. The steady upstream mass blowing is an effective approach for the noise suppression in supersonic cavity flows. The strength of the resonant noise and the broadband noise are decreased with a delightful amplitude, that is, approximately 15 dB SPL decrease in the dominant mode and 5 dB SPL decrease in the broadband noise. Two primary mechanisms are addressed for the noise control with steady upstream mass blowing, lifting up of the cavity shear-layer and disruption of shear-layer instability.


Sound Pressure Level Noise Suppression Noise Control AIAA Journal Cavity Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossiter, J.E.: Wind Tunnel Experiments on the Flow over Rectangular Caviries at Subsonic and Transonic Speed. Research and Memoranda 3438. Aerospace Research Council (1964)Google Scholar
  2. 2.
    Heller, H.H., Holmes, D.G., Covert, E.E.: Flow-Induced Pressure Oscillations in Shallow Cavities. Journal of Sound and Vibration 18(4), 545–553 (1971)CrossRefGoogle Scholar
  3. 3.
    Rockwell, D., Naudascher, E.: Review - SeIf-Sustaining Oscillation of Flow Past Cavities. Journal of Fluid Engineering Transaction of American Socieary of Mechanical Engineering 100, 152–165 (1978)Google Scholar
  4. 4.
    Colonius, T.: An Overview of simulation, Modeling, and Active Control of Flow/Acoustic Resonance in Open Cavities. AIAA-2001-76 (2001)Google Scholar
  5. 5.
    Lawson, S., Barakos, G.N.: Review of Numerical Simulations for High-speed, Turbulent Cavity Flows. Progress in Aerospace Sciences (2011)Google Scholar
  6. 6.
    Zhuang, N., Alvi, F.S., Alkislar, M.B., Shihx, C.: Supersonic Cavity Flows and Their Control. AIAA Journal 44(9), 2118–2128 (2006)CrossRefGoogle Scholar
  7. 7.
    Rowley, C., Williams, R.D.: Dynamics and Control of High-Reynolds-Number Flow over Open Cavities. Annual Review of Fluid Mechanics (2006)Google Scholar
  8. 8.
    Cattafesta, L.N., Song, Q., Williams, D.R., Rowley, C.W., Alvi, F.S.: Active Control of Flow-induced Cavity Oscillations. Progress in Aerospace Sciences 44, 479–502 (2008)CrossRefGoogle Scholar
  9. 9.
    Smith, D.L., Shaw, L.L.: Prediction of the Pressure Oscillation in Cavities Exposed to Aerodynamic Flow, Tech. rep., Air Force Flight Dynamics Laboratory, Rept. TR-75-34, Wright-Patterson Air Force Base, OH (1975)Google Scholar
  10. 10.
    Sarno, R.L., Franket, M.E.: Suppression of Flow-Induced Pressure Oscillations in Cavities. Journal of Aircraft 31(1), 90–96 (1994)CrossRefGoogle Scholar
  11. 11.
    Perng, S.W., Dolling, D.S.: Suppression of Pressure Oscillations in High-Mach-Number, Turbulent, Cavity Flow. Journal of Aircraft 38(2), 248–256 (2001)CrossRefGoogle Scholar
  12. 12.
    Ukeiley, L.S., Ponton, M.K., Seiner, J.M., Jansen, B.: Suppression of Pressure Loads in Cavity Flows. AIAA Journal 42(1), 70–79 (2004)CrossRefGoogle Scholar
  13. 13.
    Vikramaditya, N.S., Kurian, J.: Pressure Oscillations from Cavities with Ramp. AIAA Journal 47 (2009)Google Scholar
  14. 14.
    Williams, D.R., Cornelius, D., Rowley, C.W.: Supersonic Cavity Response on Open Loop Forcing. In: King, R. (ed.) Active Flow Control. NNFM, vol. 95, pp. 230–243. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Vakili, A.D., Gauthier, C.: Control of Cavity Flow by Upstream Mass-Injection. Journal of Aircraft 31(1) (1994)Google Scholar
  16. 16.
    Lusk, T., Dudley, J., Ukeiley, L., Cattafesta, L.: Flow Field Effects of Control on Supersonic Open Cavities. AIAA 2011-39 (2011)Google Scholar
  17. 17.
    Rizzetta, D.P., Visbal, M.R.: Large-Eddy Simulation of Supersonic Cavity Flowfields Including Flow Control. AIAA Journal 41(8), 1452–1462 (2003)CrossRefGoogle Scholar
  18. 18.
    Arunajatesan, S., Kannepalli, C., Sinha, N., Sheehan, M., Alvi, F., Shumway, G., Ukeiley, L.: Suppression of Cavity Loads Using Leading-Edge Blowing. AIAA Journal 47(5), 1132–1144 (2009)CrossRefGoogle Scholar
  19. 19.
    Ukeiley, L.S., Sheehan, M., Coiffet, F., Alvi, F.S., Arunajatesan, S., Jansen, B.: Control of Pressure Loads in Geometrically Complex Cavitiesz. Journal of Aircraft 45(3), 1014–1024 (2008)CrossRefGoogle Scholar
  20. 20.
    Urbin, G., Knight, D.: Large-Eddy Simulation of a Supersonic Boundary Layer Using an Unstructured Grid. AIAA Journal 39(7), 1288–1295 (2001)CrossRefGoogle Scholar
  21. 21.
    Nonomura, T., Fujii, K.: Effects of Difference Scheme Type in High-order Weighted Compact Nonlinear Schemes. Journal of Computational Physics 228, 3533–3539 (2009)zbMATHCrossRefGoogle Scholar
  22. 22.
    Nonomura, T., Iizuka, N., Fujii, K.: Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids. Computers & Fluids 39(2), 197–214 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Nonomura, T., Li, W., Goto, Y., Fujii, K.: Improvements of Efficiency in Seventh-order Weighted Compact Nonlinear Scheme. CFD Journal 18(2), 180–186 (2011)Google Scholar
  24. 24.
    Shima, E., Jounouchi, T.: Role of CFD in Aeronautical Engineering (No.14) -AUSM type Upwind Schemes. In: Proceedings of the 14th NAL Symposium on Aircraft Computational Aerodynamics, NAL, pp. 7–12 (1997)Google Scholar
  25. 25.
    Nishida, H., Nonomura, T.: ADI-SGS Scheme on Ideal Magnetohydrodynamics. Journal of Computational Physics 228, 3182–3188 (2009)CrossRefGoogle Scholar
  26. 26.
    Li, W., Nonomura, T., Oyama, A., Fujii, K.: LES Study of Feedback-loop Mechanism of Supersonic Open Cavity Flows. AIAA (2010)Google Scholar
  27. 27.
    Li, W., Nonomura, T., Fujii, K.: Effects of shear-layer characteristic on the Feedback-loop Mechanism in supersonic open cavity flows. AIAA (2011)Google Scholar
  28. 28.
    Sahoo, D., Annaswamy, A.: Control of Cavity Tones in Supersonic Flow, AIAA 2005-793 (2005)Google Scholar
  29. 29.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Dept. of Aeronautics and AstronauticsUniversity of TokyoTokyoJapan
  2. 2.Institute of Space and Astronautics ScienceJAXASagamiharaJapan

Personalised recommendations