Skip to main content

On the Minimum Diameter Cost-Constrained Steiner Tree Problem

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

Given an edge-weighted undirected graph G = (V,E,c,w) where each edge e ∈ E has a cost c(e) ≥ 0 and another weight w(e) ≥ 0, a set S ⊆ V of terminals and a given constant C0 ≥ 0, the aim is to find a minimum diameter Steiner tree whose all terminals appear as leaves and the cost of tree is bounded by C0. The diameter of tree refers to the maximum weight of the paths connecting two different leaves in the tree. This problem is called the minimum diameter cost-constrained Steiner tree problem, which is NP-hard even when the topology of the Steiner tree is fixed. In this paper, we deal with the fixed-topology restricted version. We prove the restricted version to be polynomially solvable when the topology is not part of the input and propose a weakly fully polynomial time approximation scheme (weakly FPTAS) when the topology is part of the input, which can find a (1 + ε)–approximation of the restricted version problem for any ε > 0 with specific characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apostolopoulos, G., Guerin, R., Kamat, S., Tripathi, S.: Quality of service based routing: a performance perspective. In: Proc. ACM SigComm 1998, pp. 17–28 (1998)

    Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory with Application. Macmillan, London (1976)

    Google Scholar 

  3. Chen, Y.H.: An Improved Approximation Algorithm for the Terminal Steiner Tree Problem. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part III. LNCS, vol. 6784, pp. 141–151. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Deo, N., Abdalla, A.: Computing a Diameter-Constrained Minimum Spanning Tree in Parallel. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, pp. 17–31. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Ding, W.: Many-to-Many Multicast Routing Under a Fixed Topology: Basic Architecture, Problems and Algorithms. In: First International Conference on Networking and Distributed Computing (ICNDC 2010), pp. 128–132 (2010)

    Google Scholar 

  6. Ding, W., Lin, G., Xue, G.: Diameter-Constrained Steiner Trees. Discrete Mathematics, Algorithms and Applications 3(4), 491–502 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ding, W., Xue, G.: A Linear Time Algorithm for Computing a Most Reliable Source on a Tree Network with Faulty Nodes. Theor. Comput. Sci. 412, 225–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drake, D.E., Hougrady, S.: On Approximation Algorithms for the Terminal Steiner Tree Problem. Info. Proc. Lett. 89, 15–18 (2004)

    Article  MATH  Google Scholar 

  9. Du, D., Hu, X.: Steiner Tree Problems in Computer Communication Networks. World Scientific Publishing Co. Pte. Ltd., Singapore (2008)

    Book  MATH  Google Scholar 

  10. Fuchs, B.: A Note on the Terminal Steiner tree Problem. Info. Proc. Lett. 87, 219–220 (2003)

    Article  MATH  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  12. Gouveia, L., Magnanti, T.L.: Network Flow Models for Designing Diameter-Constrained Minimum Spanning and Steiner Trees. Networks 41, 159–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hassin, R.: Approximation Schemes for the Restricted Shortest Path Problem. Math. of Oper. Res. 17, 36–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. Annals of Disc. Math., vol. 53. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  15. Ibarra, O., Kim, C.: Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems. J. ACM 22(4), 463–468 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, G., Xue, G.: On the Terminal Steiner Problem. Info. Proc. Lett. 84, 103–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martineza, F.V., Pinab, J.C.D., Soares, J.: Algorithm for Terminal Steiner Trees. Theor. Comput. Sci. 389, 133–142 (2007)

    Article  Google Scholar 

  18. Marathe, M.V., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Bicriteria Network Design Problems. J. Algorithms 28(1), 142–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Robins, G., Zelikovsky, A.: Improved Steiner Tree Approximation in Graphs. In: Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA 2000), pp. 770–779 (2000)

    Google Scholar 

  20. dos Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving Diameter Constrained Minimum Spanning Tree Problems in Dense Graphs. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 458–467. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Sahni, S.: General Techniques for Combinatorial Approximations. Oper. Res. 35, 70–79 (1977)

    MathSciNet  Google Scholar 

  22. Tamir, A.: An O(pn 2) Algorithm for the p-Median and Related Problems on Tree Graphs. Oper. Res. Lett. 19, 59–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    Google Scholar 

  24. Wang, L., Jia, X.: Note Fixed Topology Steiner Trees and Spanning Forests. Theor. Comput. Sci. 215(1-2), 359–370 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, Z., Crowcroft, J.: Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications 14, 1228–1234 (1996)

    Article  Google Scholar 

  26. Xue, G., Xiao, W.: A Polynomial Time Approximation Scheme for Minimum Cost Delay-Constrained Multicast Tree under a Steiner Topology. Algorithmica 41(1), 53–72 (2004)

    Article  MathSciNet  Google Scholar 

  27. Xue, G., Zhang, W., Tang, J., Thulasiraman, K.: Polynomial Time Approximation Algorithms for Multi-Constrained QoS Routing. IEEE/ACM Trans. Netw. 16, 656–669 (2008)

    Article  Google Scholar 

  28. Zelikovsky, A.: An \(\frac{11}{6}\)-Approximation Algorithm for the Network Steiner Problem. Algorithmica 9(5), 463–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, W., Xue, G. (2012). On the Minimum Diameter Cost-Constrained Steiner Tree Problem. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics