Skip to main content

On the Generalized Multiway Cut in Trees Problem

  • Conference paper
  • 1194 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7402))

Abstract

Given a tree T = (V, E) with n vertices and a collection of terminal sets D = {S 1, S 2, …, S c }, where each S i is a subset of V and c is a constant, the generalized Multiway Cut in trees problem (GMWC(T)) asks to find a minimum size edge subset E′ ⊆ E such that its removal from the tree separates all terminals in S i from each other for each terminal set S i . The GMWC(T) problem is a natural generalization of the classical Multiway Cut in trees problem, and has an implicit relation to the Densest k-Subgraph problem. In this paper, we show that the GMWC(T) problem is fixed-parameter tractable by giving an O(n 2 + 2k) time algorithm, where k is the size of an optimal solution, and the GMWC(T) problem is polynomial time solvable when the problem is restricted in paths. We also discuss some heuristics for the GMWC(T) problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting high log-densities – an O(n 1/4) approximation for densest k-subgraph. In: Schulman, L. (ed.) Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, STOC, pp. 201–210. ACM (2010)

    Google Scholar 

  2. Bender, M.A., Farach-Colton, M.: The LCA Problem Revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Fortnow, L., Vadhan, S. (eds.) Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC, pp. 459–468. ACM (2011)

    Google Scholar 

  4. Chen, J.-E., Liu, Y., Lu, S.-J.: An improved parameterized algorithm for the minimum node multiway cut problem. Algorithmica 55, 1–13 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chopra, S., Rao, M.: On the Multiway Cut Polyhedron. Networks 21, 51–89 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costa, M.-C., Billionnet, A.: Multiway cut and integer flow problems in trees. Electronic Notes in Discrete Mathematics 17, 105–109 (2004)

    Article  MathSciNet  Google Scholar 

  7. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal on Computing 23, 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garg, N., Vazirani, V., Yannakakis, M.: Primal-dual approximation algorithm for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for multicut in trees. Networks 46(3), 124–135 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding algorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations Research 29(3), 436–461 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. Journal of Computer and System Sciences 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Manokaran, R., Naor, J., Raghavendra, P., Schwartz, R.: SDP gaps and UGC hardness for multiway cut, 0-extension, and metric labeling. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC, pp. 11–20. ACM (2008)

    Google Scholar 

  13. Mestre, J.: Lagrangian relaxation and partial cover (extended abstract). In: Albers, S., Weil, P. (eds.) Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 539–550. LIPIcs 1 Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2008)

    Google Scholar 

  14. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Xiao, M.-Y.: Simple and improved parameterized algorithms for multiterminal cuts. Theory of Computing Systems 46, 723–736 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, P.: Approximating Generalized Multicut on Trees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 799–808. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Zhang, P., Zhu, D.-M., Luan, J.-F.: An approximation algorithm for the generalized k-Multicut problem. Discrete Applied Mathematics 160(7-8), 1240–1247 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Zhang, P. (2012). On the Generalized Multiway Cut in Trees Problem. In: Lin, G. (eds) Combinatorial Optimization and Applications. COCOA 2012. Lecture Notes in Computer Science, vol 7402. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31770-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31770-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31769-9

  • Online ISBN: 978-3-642-31770-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics