Life: The Physical Underpinnings of Replication

Part of the Physical Chemistry in Action book series (PCIA)


Replication is a fundamental process that is critical to life as we know it. While replication today is carried out by complex biochemical machineries that have been evolving for billions of years, it must have originated with relatively small molecules in simple systems. Here we explore this concept, focusing on the physicochemical characteristics and prebiotic potential of two classes of biological macromolecules: nucleic acids and lipids. We discuss the informational and catalytic capabilities of DNA and RNA, the thermodynamic limits of information transfer, the structure and function of lipid membranes, and the formation and maintenance of primitive ‘protocells’.


Error Ratio Inclusive Fitness Peptide Bond Formation Transition State Analogue Error Catastrophe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443. doi: 10.1016/j.bioorg.2007.08.001 Google Scholar
  2. 2.
    Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 6:e18. doi: 10.1371/journal.pbio.0060018 Google Scholar
  3. 3.
    Shapiro R (2007) A simpler origin of life. Scientific American. Accessed 7 Mar 2012
  4. 4.
    Benner SA, Hutter D (2002) Phosphates, DNA, and the search for nonterrean life: a second generation model for genetic molecules. Bioorg Chem 30:62–80. doi: 10.1006/bioo.2001.1232 Google Scholar
  5. 5.
    Crick FH (1968) The origin of the genetic code. J Mol Biol 38:367–379. doi: 10.1016/0022-2836(68)90392-6 Google Scholar
  6. 6.
    Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393. doi: 10.1016/0022-2836(68)90393-8 Google Scholar
  7. 7.
    Woese CR, Dugre DH, Dugre SA et al (1966) On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol 31:723–736Google Scholar
  8. 8.
    Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857. doi: 10.1016/0092-8674(83)90117-4 Google Scholar
  9. 9.
    Kruger K, Grabowski PJ, Zaug AJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157. doi: 10.1016/0092-8674(82)90414-7 Google Scholar
  10. 10.
    Cheng LKL, Unrau PJ (2010) Closing the circle: replicating RNA with RNA. Cold Spring Harb Perspect Biol 2:a002204. doi: 10.1101/cshperspect.a002204 Google Scholar
  11. 11.
    Ferré-D’Amaré AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2:a003574. doi: 10.1101/cshperspect.a003574 Google Scholar
  12. 12.
    Joyce GF (2009) Evolution in an RNA world. Cold Spring Harb Symp Quant Biol 74:17–23. doi: 10.1101/sqb.2009.74.004 Google Scholar
  13. 13.
    Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences. Science 261:1411–1418. doi: 10.1126/science.7690155 Google Scholar
  14. 14.
    Wochner A, Attwater J, Coulson A, Holliger P (2011) Ribozyme-catalyzed transcription of an active ribozyme. Science 332:209–212. doi: 10.1126/science.1200752 Google Scholar
  15. 15.
    Cech TR (1992) In: Frangsmyr T, Malmstrom BG (eds) Nobel lectures, chemistry 1981–1990. World Scientific Publishing Co., SingaporeGoogle Scholar
  16. 16.
    Carothers JM, Oestreich SC, Davis JH, Szostak JW (2004) Informational complexity and functional activity of RNA structures. J Am Chem Soc 126:5130–5137. doi: 10.1021/ja031504a Google Scholar
  17. 17.
    Kumar RK, Yarus M (2001) RNA-catalyzed amino acid activation. Biochemistry 40:6998–7004. doi: 10.1021/bi010710x Google Scholar
  18. 18.
    Illangasekare M, Sanchez G, Nickles T, Yarus M (1995) Aminoacyl-RNA synthesis catalyzed by an RNA. Science 267:643–647. doi: 10.1126/science.7530860 Google Scholar
  19. 19.
    Lee N, Suga H (2001) A minihelix-loop RNA acts as a trans-aminoacylation catalyst. RNA 7:1043–1051. doi: 10.1017/S1355838201010457 Google Scholar
  20. 20.
    Turk RM, Chumachenko NV, Yarus M (2010) Multiple translational products from a five-nucleotide ribozyme. Proc Natl Acad Sci USA 107:4585–4589. doi: 10.1073/pnas.0912895107 Google Scholar
  21. 21.
    Yarus M, Widmann JJ, Knight R (2009) RNA-amino acid binding: a stereochemical era for the genetic code. J Mol Evol 69:406–429. doi: 10.1007/s00239-009-9270-1 Google Scholar
  22. 22.
    Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920. doi: 10.1126/science.289.5481.905 Google Scholar
  23. 23.
    Nissen P, Hansen J, Ban N et al (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930. doi: 10.1126/science.289.5481.920 Google Scholar
  24. 24.
    Jencks WP (1969) Catalysis in chemistry and enzymology. McGraw Hill, New YorkGoogle Scholar
  25. 25.
    Joyce GF (1987) Nonenzymatic template-directed synthesis of informational macromolecules. Cold Spring Harb Symp Quant Biol 52:41–51Google Scholar
  26. 26.
    Zielinski WS, Orgel LE (1985) Oligomerization of activated derivatives of 3′-amino-3′-deoxyguanosine on poly(C) and poly(dC) templates. Nucleic Acids Res 13:2469–2484. doi: 10.1093/nar/13.7.2469 Google Scholar
  27. 27.
    Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA (2011) The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res 39:8135–8147. doi: 10.1093/nar/gkr525 Google Scholar
  28. 28.
    Li X, Liu DR (2004) DNA-templated organic synthesis: nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew Chem Int Ed Engl 43:4848–4870. doi: 10.1002/anie.200400656 Google Scholar
  29. 29.
    Weber AL, Orgel LE (1978) The formation of peptides from the 2′(3′)-glycyl ester of a nucleotide. J Mol Evol 11:189–198. doi: 10.1007/BF01734480 Google Scholar
  30. 30.
    Weber AL, Orgel LE (1980) Poly(U)-directed peptide-bond formation from the 2′(3′)-glycyl esters of adenosine derivatives. J Mol Evol 16:1–10. doi: 10.1007/BF01732065 Google Scholar
  31. 31.
    Tamura K, Schimmel P (2001) Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Proc Natl Acad Sci USA 98:1393–1397. doi: 10.1073/pnas.98.4.1393 Google Scholar
  32. 32.
    Tamura K, Schimmel P (2003) Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Proc Natl Acad Sci USA 100:8666–8669. doi: 10.1073/pnas.1432909100 Google Scholar
  33. 33.
    Tjivikua T, Ballester P, Rebek J (1990) Self-replicating system. J Am Chem Soc 112:1249–1250. doi: 10.1021/ja00159a057 Google Scholar
  34. 34.
    Lee DH, Granja JR, Martinez JA et al (1996) A self-replicating peptide. Nature 382:525–528. doi: 10.1038/382525a0 Google Scholar
  35. 35.
    Joshi PC, Aldersley MF, Delano JW, Ferris JP (2009) Mechanism of montmorillonite catalysis in the formation of RNA oligomers. J Am Chem Soc 131:13369–13374. doi: 10.1021/ja9036516 Google Scholar
  36. 36.
    Turk RM, Illangasekare M, Yarus M (2011) Catalyzed and spontaneous reactions on ribozyme ribose. J Am Chem Soc 133:6044–6050. doi: 10.1021/ja200275h Google Scholar
  37. 37.
    Hammond GS (1955) A correlation of reaction rates. J Am ChemSoc 77:334–338. doi: 10.1021/ja01607a027 Google Scholar
  38. 38.
    Hilvert D, Carpenter SH, Nared KD, Auditor MT (1988) Catalysis of concerted reactions by antibodies: the Claisen rearrangement. Proc Natl Acad Sci USA 85:4953–4955. doi: 10.1073/pnas.85.14.4953 Google Scholar
  39. 39.
    Jacobsen JR, Schultz PG (1994) Antibody catalysis of peptide bond formation. Proc Natl Acad Sci USA 91:5888–5892. doi: 10.1073/pnas.91.13.5888 Google Scholar
  40. 40.
    Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci USA 95:8420–8427. doi: 10.1073/pnas.95.15.8420 Google Scholar
  41. 41.
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523Google Scholar
  42. 42.
    Eigen M, McCaskill J, Schuster P (1988) Molecular quasi-species. J Phys Chem 92:6881–6891. doi: 10.1021/j100335a010 Google Scholar
  43. 43.
    Nowak MA (1992) What is a quasispecies? Trends Ecol Evol 7:118–121. doi: 10.1016/0169-5347(92)90145-2 Google Scholar
  44. 44.
    Nowak MA, Schuster P (1989) Error thresholds of replication in finite populations. Mutation frequencies and the onset of Muller’s ratchet. J Theor Biol 137:375–395. doi: 10.1016/S0022-5193(89)80036-0 Google Scholar
  45. 45.
    Schuster P, Swetina J (1988) Stationary mutant distributions and evolutionary optimization. Bull Math Biol 50:635–660. doi: 10.1007/BF02460094 Google Scholar
  46. 46.
    Gago S, Elena SF, Flores R, Sanjuan R (2009) Extremely high mutation rate of a hammerhead viroid. Science 323:1308. doi: 10.1126/science.1169202 Google Scholar
  47. 47.
    Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913. doi: 10.1073/pnas.96.24.13910 Google Scholar
  48. 48.
    Schuster P (2006) In: Klussmann S (ed) The aptamer handbook. Weinheim, Wiley-VCHGoogle Scholar
  49. 49.
    Gerland U, Hwa T (2002) On the selection and evolution of regulatory DNA motifs. J Mol Evol 55:386–400. doi: 10.1007/s00239-002-0-2335-z Google Scholar
  50. 50.
    Hopfield JJ (1974) Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139. doi: 10.1073/pnas.71.10.4135 Google Scholar
  51. 51.
    Ninio J (1974) A semi-quantitative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J Mol Biol 84:297–313. doi: 10.1016/0022-2836(74)90586-5 Google Scholar
  52. 52.
    Johnson KA (1993) Conformational coupling in DNA polymerase fidelity. Annu Rev Biochem 62:685–713. doi: 10.1146/annurev.biochem.62.1.685 Google Scholar
  53. 53.
    Freier SM, Kierzek R, Jaeger JA, Sugimoto N, Caruthers MH, Neilson T, Turner DH (1986) Improved free-energy parameters for predictions of RNA duplex stability. Proc Natl Acad Sci USA 83:9373–9377. doi: 10.1073/pnas.83.24.9373 Google Scholar
  54. 54.
    Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940. doi: 10.1006/jmbi.1999.2700 Google Scholar
  55. 55.
    SantaLucia J Jr (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465. doi: 10.1073/pnas.95.4.1460 Google Scholar
  56. 56.
    Schink S, Renner S, Alim K, Arnaut V, Simmel FC, Gerland U (2012) Quantitative analysis of the nanopore translocation dynamics of simple structured polynucleotides. Biophys J 102:85–95. doi: 10.1016/j.bpj.2011.11.4011 Google Scholar
  57. 57.
    Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–52. doi: 10.1016/0022-5193(64)90038-4 Google Scholar
  58. 58.
    Alcock J (1993) Animal behavior: an evolutionary approach. Sinauer Associates, Inc., SunderlandGoogle Scholar
  59. 59.
    Sherman PW (1977) Nepotism and the evolution of alarm calls. Science 197:1246–1253. doi: 10.1126/science.197.4310.1246 Google Scholar
  60. 60.
    Hamilton WD (1975) In: Fox R (ed) Biosocial anthropology. Wiley, New YorkGoogle Scholar
  61. 61.
    Sober E, Wilson DS (1998) Unto others: the evolution and psychology of unselfish behavior. Harvard University Press, CambridgeGoogle Scholar
  62. 62.
    Frank SA (1995) George Price’s contributions to evolutionary genetics. J Theor Biol 175:373–388. doi: 10.1006/jtbi.1995.0148 Google Scholar
  63. 63.
    Wilson DS (1975) A theory of group selection. Proc Natl Acad Sci USA 72:143–146Google Scholar
  64. 64.
    Price GR (1972) Extension of covariance selection mathematics. Ann Hum Genet 35:485–490Google Scholar
  65. 65.
    Dugatkin LA (2002) Cooperation in animals: an evolutionary overview. Biol Philos 17:459–476. doi: 10.1023/A:1020573415343 Google Scholar
  66. 66.
    Rissing SW, Pollock GB, Higgins MR et al (1989) Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338:420. doi: 10.1038/338420a0 Google Scholar
  67. 67.
    Goodnight CJ, Stevens L (1997) Experimental studies of group selection: what do they tell us about group selection in nature? Am Nat 150(Suppl 1):S59–S79. doi: 10.1086/286050 Google Scholar
  68. 68.
    Wade MJ (1976) Group selections among laboratory populations of Tribolium. Proc Natl Acad Sci USA 73:4604–4607. doi: 10.1073/pnas.73.12.4604 Google Scholar
  69. 69.
    Buss LW (1987) The evolution of individuality. Princeton University Press, PrincetonGoogle Scholar
  70. 70.
    Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, CambridgeGoogle Scholar
  71. 71.
    Lewontin RC (1970) Units of selection. Annu Rev Ecol Syst 1:1–18Google Scholar
  72. 72.
    Smith JM, Szathmary E (1995) The major transitions in evolution. W.H Freeman, OxfordGoogle Scholar
  73. 73.
    Szathmáry E, Demeter L (1987) Group selection of early replicators and the origin of life. J Theor Biol 128:463–486. doi: 10.1016/S0022-5193(87)80191-1 Google Scholar
  74. 74.
    Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J Mol Evol 53:555–595. doi: 10.1007/s002390010245 Google Scholar
  75. 75.
    Koch AL (1984) Evolution vs the number of gene copies per primitive cell. J Mol Evol 20:71–76. doi: 10.1007/BF02101988 Google Scholar
  76. 76.
    Matsuura T, Yamaguchi M, Ko-Mitamura EP et al (2002) Importance of compartment formation for a self-encoding system. Proc Natl Acad Sci USA 99:7514–7517. doi: 10.1073/pnas.062710399 Google Scholar
  77. 77.
    Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390. doi: 10.1038/35053176 Google Scholar
  78. 78.
    Szabó P, Scheuring I, Czárán T, Szathmáry E (2002) In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 420:340–343. doi: 10.1038/nature01187 Google Scholar
  79. 79.
    Gebicki JM, Hicks M (1973) Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243:232–234. doi: 10.1038/243232a0 Google Scholar
  80. 80.
    Allen WV, Ponnamperuma C (1967) A possible prebiotic synthesis of monocarboxylic acids. Curr Mod Biol 1:24–28Google Scholar
  81. 81.
    Yuen GU, Lawless JG, Edelson EH (1981) Quantification of monocarboxylic acids from a spark discharge synthesis. J Mol Evol 17:43–47. doi: 10.1007/BF01792423 Google Scholar
  82. 82.
    McCollom TM, Ritter G, Simoneit BR (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166. doi: 10.1023/A:1006592502746 Google Scholar
  83. 83.
    Rushdi AI, Simoneit BR (2001) Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100 to 400 degrees C. Orig Life Evol Biosph 31:103–118. doi: 10.1023/A:1006702503954 Google Scholar
  84. 84.
    Lawless JG, Yuen GU (1979) Quantification of monocarboxylic acids in the Murchison carbonaceous meteorite. Nature 282:396. doi: 10.1038/282396a0 Google Scholar
  85. 85.
    Naraoka H, Shimoyama A, Harada K (1999) Molecular distribution of monocarboxylic acids in Asuka carbonaceous chondrites from Antarctica. Orig Life Evol Biosph 29:187–201. doi: 10.1023/A:1006547127028 Google Scholar
  86. 86.
    Yuen G, Blair N, Des Marais DJ, Chang S (1984) Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307:252–254. doi: 10.1038/307252a0 Google Scholar
  87. 87.
    Yuen GU, Kvenvolden KA (1973) Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246:301. doi: 10.1038/246301a0 Google Scholar
  88. 88.
    Deamer DW (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317:792. doi: 10.1038/317792a0 Google Scholar
  89. 89.
    Deamer DW, Pashley RM (1989) Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation. Orig Life Evol Biosph 19:21–38. doi: 10.1007/BF01808285 Google Scholar
  90. 90.
    Cistola DP, Hamilton JA, Jackson D, Small DM (1988) Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry 27:1881–1888. doi: 10.1021/bi00406a013 Google Scholar
  91. 91.
    Small DM (1986) In: Small DM (ed) The physical chemistry of lipids: from alkanes to phospholipids. Plenum Press, New YorkGoogle Scholar
  92. 92.
    Apel CL, Deamer DW, Mautner MN (2002) Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim Biophys Acta – Biomembranes 1559:1–9. doi: 10.1016/S0005-2736(01)00400-X Google Scholar
  93. 93.
    Walde P, Goto A, Monnard P-A et al (1994) Oparin’s reactions revisited: enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. J Am Chem Soc 116:7541–7547. doi: 10.1021/ja00096a010 Google Scholar
  94. 94.
    Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41:441–501. doi: 10.1021/cr60130a002 Google Scholar
  95. 95.
    Hunter RJ (2001) Foundations of colloid science, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  96. 96.
    Blandamer MJ, Cullis PM, Soldi LG et al (1995) Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation. Adv Colloid Interface Sci 58:171–209. doi: 10.1016/0001-8686(95)00252-L Google Scholar
  97. 97.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc, Faraday Trans 2 72:1525–1568. doi: 10.1039/F29767201525 Google Scholar
  98. 98.
    Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of self-assembly of lipid bilayers and vesicles. Biochim Biophys Acta 470:185–201. doi: 10.1016/0005-2736(77)90099-2 Google Scholar
  99. 99.
    Monnard P-A, Deamer DW (2003) Preparation of vesicles from nonphospholipid amphiphiles. Meth Enzymol 372:133–151. doi: 10.1016/S0076-6879(03)72008-4 Google Scholar
  100. 100.
    Walde P, Wick R, Fresta M et al (1994) Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116:11649–11654. doi: 10.1021/ja00105a004 Google Scholar
  101. 101.
    Blöchliger E, Blocher M, Walde P, Luisi PL (1998) Matrix effect in the size distribution of fatty acid vesicles. J Phys Chem B 102:10383–10390. doi: 10.1021/jp981234w Google Scholar
  102. 102.
    Berclaz N, Blöchliger E, Müller M, Luisi PL (2001) Matrix effect of vesicle formation as investigated by cryotransmission electron microscopy. J Phys Chem B 105:1065–1071. doi: 10.1021/jp002151u Google Scholar
  103. 103.
    Allahyarov E, D’Amico I, Löwen H (1998) Attraction between like-charged macroions by Coulomb depletion. Phys Rev Lett 81:1334–1337. doi: 10.1103/PhysRevLett.81.1334 Google Scholar
  104. 104.
    Angelini TE, Liang H, Wriggers W, Wong GCL (2003) Like-charge attraction between polyelectrolytes induced by counterion charge density waves. Proc Natl Acad Sci USA 100:8634–8637. doi: 10.1073/pnas.1533355100 Google Scholar
  105. 105.
    Butler JC, Angelini T, Tang JX, Wong GCL (2003) Ion multivalence and like-charge polyelectrolyte attraction. Phys Rev Lett 91:028301. doi: 10.1103/PhysRevLett.91.028301 Google Scholar
  106. 106.
    Ha B-Y (2001) Modes of counterion density fluctuations and counterion-mediated attractions between like-charged fluid membranes. Phys Rev E 64:031507. doi: 10.1103/PhysRevE.64.031507 Google Scholar
  107. 107.
    Levin Y (1999) When do like charges attract? Physica A 265:432–439. doi: 10.1016/S0378-4371(98)00552-4 Google Scholar
  108. 108.
    Linse P, Lobaskin V (1999) Electrostatic attraction and phase separation in solutions of like-charged colloidal particles. Phys Rev Lett 83:4208–4211. doi: 10.1103/PhysRevLett.83.4208 Google Scholar
  109. 109.
    Dinsmore AD, Wong DT, Nelson P, Yodh AG (1998) Hard spheres in vesicles: curvature-induced forces and particle-induced curvature. Phys Rev Lett 80:409–412. doi: 10.1103/PhysRevLett.80.409 Google Scholar
  110. 110.
    Kaplan PD, Rouke JL, Yodh AG, Pine DJ (1994) Entropically driven surface phase separation in binary colloidal mixtures. Phys Rev Lett 72:582–585. doi: 10.1103/PhysRevLett.72.582 Google Scholar
  111. 111.
    Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622. doi: 10.1126/science.1089904 Google Scholar
  112. 112.
    Hanczyc MM, Mansy SS, Szostak JW (2007) Mineral surface directed membrane assembly. Orig Life Evol Biosph 37:67–82. doi: 10.1007/s11084-006-9018-5 Google Scholar
  113. 113.
    Chen IA, Szostak JW (2004) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998. doi: 10.1529/biophysj.104.039875 Google Scholar
  114. 114.
    Berclaz N, Müller M, Walde P, Luisi PL (2001) Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064. doi: 10.1021/jp001298i Google Scholar
  115. 115.
    Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713. doi: 10.1021/ja900919c Google Scholar
  116. 116.
    Bartlett JH, Kromhout RA (1952) The Donnan equilibrium. Bull Math Biophys 14:385–391Google Scholar
  117. 117.
    Tinoco I, Sauer K, Wang JC, Puglisi JD (2002) Physical chemistry: principles and applications in biological sciences, 4th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  118. 118.
    Hallett FR, Marsh J, Nickel BG, Wood JM (1993) Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J 64:435–442. doi: 10.1016/S0006-3495(93)81384-5 Google Scholar
  119. 119.
    Mui BL, Cullis PR, Evans EA, Madden TD (1993) Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J 64:443–453. doi: 10.1016/S0006-3495(93)81385-7 Google Scholar
  120. 120.
    Needham D, Nunn RS (1990) Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J 58:997–1009. doi: 10.1016/S0006-3495(90)82444-9 Google Scholar
  121. 121.
    Shoemaker SD, Vanderlick TK (2002) Stress-induced leakage from phospholipid vesicles: effect of membrane composition. Ind Eng Chem Res 41:324–329. doi: 10.1021/ie010049t Google Scholar
  122. 122.
    Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476. doi: 10.1126/science.1100757 Google Scholar
  123. 123.
    Budin I, Szostak JW (2011) Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA 108:5249–5254. doi: 10.1073/pnas.1100498108 Google Scholar

Further Reading

  1. Deamer DW, Fleischacker GR (eds) (1994) Origins of life: the central concepts. Jones and Bartlett Publishers, BostonGoogle Scholar
  2. Deamer D, Szostak JW (eds) (2010) The origins of life. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  3. Gesteland RF, Atkins JF (eds) (1993) The RNA world, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  4. Jencks WP (1969) Catalysis in chemistry and enzymology. McGraw Hill, New YorkGoogle Scholar
  5. Saenger W (1984) Principles of nucleic acid structure. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.FAS Center for Systems BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScienceLudwig-Maximilians UniversitatMunichGermany
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaCaliforniaSanta Barbara

Personalised recommendations