The Boundaries of Life

Part of the Physical Chemistry in Action book series (PCIA)


The boundaries of life are set by the physical and chemical limits beyond which functions associated with life, including growth and reproduction, cannot occur. Although these limits might appear to be specific to terrestrial life, thermodynamics and the basic biophysical properties of carbon-based molecules mean that the boundary of life using carbon as a molecular backbone and water as a solvent (the ‘biospace’) is likely to be universal, although exhibiting small variations depending on the particular molecular architecture adopted by life. Entirely novel biospaces using different chemistries (e.g. ammonia as a solvent) might be possible, although there is currently no empirical evidence for these alternative life chemistries.


Gibbs Energy Wood Frog Terrestrial Life Alternative Solvent Elemental Building Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DCGoogle Scholar
  2. 2.
    Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb Ecol 47:300–304CrossRefGoogle Scholar
  3. 3.
    Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29CrossRefGoogle Scholar
  4. 4.
    Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121CrossRefGoogle Scholar
  5. 5.
    Junge K, Deming JW, Hajo E (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310CrossRefGoogle Scholar
  6. 6.
    Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233CrossRefGoogle Scholar
  7. 7.
    Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326CrossRefGoogle Scholar
  8. 8.
    Brock TD (1979) Biology of micro-organisms, 3rd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  9. 9.
    Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92CrossRefGoogle Scholar
  10. 10.
    Junge K, Eicken H, Swanson BD, Deming JW (2007) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429CrossRefGoogle Scholar
  11. 11.
    Warren SG, Hudson SR (2003) Bacterial activity in South pole snow is questionable. Appl Environ Microbiol 69:6340–6341CrossRefGoogle Scholar
  12. 12.
    Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South pole snow. Appl Environ Microbiol 66:4514–4517CrossRefGoogle Scholar
  13. 13.
    Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512CrossRefGoogle Scholar
  14. 14.
    Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557CrossRefGoogle Scholar
  15. 15.
    Rivkina EM, Laurinavichus KS, Gilichinsky DA, Scherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181CrossRefGoogle Scholar
  16. 16.
    Elberling B, Brandt KH (2003) Uncoupling of microbial CO2 production and release in frozen soils and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272CrossRefGoogle Scholar
  17. 17.
    Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794CrossRefGoogle Scholar
  18. 18.
    Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234CrossRefGoogle Scholar
  19. 19.
    Morita RY (1997) Bacteria in oligotrophic environments. Kluwer, DordrechtGoogle Scholar
  20. 20.
    Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci USA 101:4631–4636CrossRefGoogle Scholar
  21. 21.
    D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389CrossRefGoogle Scholar
  22. 22.
    Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRefGoogle Scholar
  23. 23.
    Daniel RM, Cowan DA (2000) Review: biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264CrossRefGoogle Scholar
  24. 24.
    Cowan DA (2004) The upper temperature of life – how far can we go? Trends Microbiol 12:58–60CrossRefGoogle Scholar
  25. 25.
    Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722Google Scholar
  26. 26.
    Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MFJM, Adams MWW (1997) Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritime. J Bacteriol 179:2766–2768Google Scholar
  27. 27.
    Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381CrossRefGoogle Scholar
  28. 28.
    Kato CL, Li Y, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513Google Scholar
  29. 29.
    Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516CrossRefGoogle Scholar
  30. 30.
    Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKa CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021CrossRefGoogle Scholar
  31. 31.
    Harris RF (1981) The effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23–95Google Scholar
  32. 32.
    Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267CrossRefGoogle Scholar
  33. 33.
    Brown AD (1990) Microbial water stress: physiology: principles and perspectives. Wiley, ChichesterGoogle Scholar
  34. 34.
    Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190CrossRefGoogle Scholar
  35. 35.
    Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, Alves FDL, La Cono V, Genovese M, Mckew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments. Environ Microbiol 9:801–813CrossRefGoogle Scholar
  36. 36.
    van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123CrossRefGoogle Scholar
  37. 37.
    Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:735–805Google Scholar
  38. 38.
    Möhlmann D (2005) Adsorption of water-related potential chemical and biological processes in the upper martian surface. Astrobiology 5:770–777CrossRefGoogle Scholar
  39. 39.
    Koop T (2002) The water activity of aqueous solutions in equilibrium with ice. Bull Chem Soc Jpn 75:2587–2588CrossRefGoogle Scholar
  40. 40.
    Robbins EI, Rodgers TM, Alpers CN, Nordstrom DK (2000) Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 433:15–23CrossRefGoogle Scholar
  41. 41.
    Kelch BA, Eagen KP, Erciyas EP, Humphris EL, Thomason AR, Mitsuiki S, Agard DA (2007) Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J Mol Biol 368:870–883CrossRefGoogle Scholar
  42. 42.
    Baross JA, Berner SA, Cody GD, Copley SD, Pace NR (2007) The limits of organic life in planetary systems. National Academies Press, Washington, DCGoogle Scholar
  43. 43.
    Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611t and Gelidibacter sp. strain IC158. Appl Environ Microbiol 65:3757–3760Google Scholar
  44. 44.
    Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341CrossRefGoogle Scholar
  45. 45.
    Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304CrossRefGoogle Scholar
  46. 46.
    Schulze-Makuch D, Irwin LN (2008) Life in the Universe. Springer, HeidelbergCrossRefGoogle Scholar
  47. 47.
    Storey KB, Storey JM (1984) Biochemical adaption for freezing tolerance in the wood, Rana sylvatica. J Comp Physiol 155:29–36Google Scholar
  48. 48.
    Feinberg G, Shapiro R (1980) Life beyond Earth: the intelligent Earthling’s guide to life in the Universe. William Morrow and Company, Inc., New YorkGoogle Scholar
  49. 49.
    Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167CrossRefGoogle Scholar
  50. 50.
    Firsoff VA (1963) Life beyond the Earth. Basic Books, Inc., New YorkGoogle Scholar
  51. 51.
    Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the Universe? Curr Opin Chem Biol 8:672–689CrossRefGoogle Scholar
  52. 52.
    Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results re-interpreted. Int J Astrobiol 6:147–152CrossRefGoogle Scholar
  53. 53.
    Krauskopf KB (1983) Introduction to geochemistry, 2nd edn. McGraw-Hill, LondonGoogle Scholar
  54. 54.
    Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864Google Scholar
  55. 55.
    Stumm W, Morgan JJ (1995) Aquatic chemistry – chemical equilibria and rates in natural waters, 3rd edn. Wiley-Blackwell, New YorkGoogle Scholar
  56. 56.
    Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizier of the family Ectothiorhodospiraceae. Extremophiles 15:271–279CrossRefGoogle Scholar
  57. 57.
    Shelobolina ES, VanPraagh CG, Lovley DR (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20:143–156CrossRefGoogle Scholar
  58. 58.
    Warn JRW, Peters APH (1996) Concise chemical thermodynamics, 2nd edn. CRC Press, Boca Raton/LondonGoogle Scholar
  59. 59.
    Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30CrossRefGoogle Scholar
  60. 60.
    Grinder-Vogel M, Criddle CS, Fendorf S (2006) Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ Sci Technol 40:3544–3550CrossRefGoogle Scholar
  61. 61.
    Rogers KL, Amend JP (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3:319–332CrossRefGoogle Scholar
  62. 62.
    Rogers KL, Amend JP, Gurrieri S (2007) Temporal changes in fluid geochemistry and energy profiles in the Vulcano Island hydrothermal system. Astrobiology 7:905–932CrossRefGoogle Scholar
  63. 63.
    Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the Universe: unconventional methods for an unconventional problem. Int Microbiol 2:223–230Google Scholar
  64. 64.
    Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838CrossRefGoogle Scholar
  65. 65.
    Hoehler TM, Amend JP, Shock EL (2007) A “follow the energy” approach to astrobiology. Astrobiology 7:819–823CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of EdinburghEdinburghUK

Personalised recommendations