Skip to main content

The Boundaries of Life

  • Chapter
  • First Online:
Astrochemistry and Astrobiology

Part of the book series: Physical Chemistry in Action ((PCIA))

Abstract

The boundaries of life are set by the physical and chemical limits beyond which functions associated with life, including growth and reproduction, cannot occur. Although these limits might appear to be specific to terrestrial life, thermodynamics and the basic biophysical properties of carbon-based molecules mean that the boundary of life using carbon as a molecular backbone and water as a solvent (the ‘biospace’) is likely to be universal, although exhibiting small variations depending on the particular molecular architecture adopted by life. Entirely novel biospaces using different chemistries (e.g. ammonia as a solvent) might be possible, although there is currently no empirical evidence for these alternative life chemistries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerday C, Glansdorff N (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC

    Google Scholar 

  2. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb Ecol 47:300–304

    Article  CAS  Google Scholar 

  3. Wells LE, Deming JW (2006) Characterization of a cold-active bacteriophage on two psychrophilic marine hosts. Aquat Microb Ecol 45:15–29

    Article  Google Scholar 

  4. Wells LE, Deming JW (2006) Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ Microbiol 8:1115–1121

    Article  Google Scholar 

  5. Junge K, Deming JW, Hajo E (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310

    Article  CAS  Google Scholar 

  6. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  CAS  Google Scholar 

  7. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  Google Scholar 

  8. Brock TD (1979) Biology of micro-organisms, 3rd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  9. Daniel RM, Dunn RV, Finney JL, Smith JC (2003) The role of dynamics in enzyme activity. Annu Rev Biophys Biomol Struct 32:69–92

    Article  CAS  Google Scholar 

  10. Junge K, Eicken H, Swanson BD, Deming JW (2007) Bacterial incorporation of leucine into protein down to −20°C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology 52:417–429

    Article  Google Scholar 

  11. Warren SG, Hudson SR (2003) Bacterial activity in South pole snow is questionable. Appl Environ Microbiol 69:6340–6341

    Article  CAS  Google Scholar 

  12. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  Google Scholar 

  13. Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59:500–512

    Article  CAS  Google Scholar 

  14. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557

    Article  CAS  Google Scholar 

  15. Rivkina EM, Laurinavichus KS, Gilichinsky DA, Scherbakova VA (2002) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181

    Article  CAS  Google Scholar 

  16. Elberling B, Brandt KH (2003) Uncoupling of microbial CO2 production and release in frozen soils and its implications for field studies of arctic C cycling. Soil Biol Biochem 35:263–272

    Article  CAS  Google Scholar 

  17. Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38:785–794

    Article  CAS  Google Scholar 

  18. Campen RK, Sowers T, Alley RB (2003) Evidence of microbial consortia metabolizing within a low-latitude mountain glacier. Geology 31:231–234

    Article  CAS  Google Scholar 

  19. Morita RY (1997) Bacteria in oligotrophic environments. Kluwer, Dordrecht

    Google Scholar 

  20. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  CAS  Google Scholar 

  21. D’Amico S, Collins T, Marx J-C, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  Google Scholar 

  22. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  Google Scholar 

  23. Daniel RM, Cowan DA (2000) Review: biomolecular stability and life at high temperatures. Cell Mol Life Sci 57(2):250–264

    Article  CAS  Google Scholar 

  24. Cowan DA (2004) The upper temperature of life – how far can we go? Trends Microbiol 12:58–60

    Article  CAS  Google Scholar 

  25. Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722

    CAS  Google Scholar 

  26. Carballeira NM, Reyes M, Sostre A, Huang H, Verhagen MFJM, Adams MWW (1997) Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritime. J Bacteriol 179:2766–2768

    CAS  Google Scholar 

  27. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381

    Article  CAS  Google Scholar 

  28. Kato CL, Li Y, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K (1998) Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64:1510–1513

    CAS  Google Scholar 

  29. Sharma A, Scott JH, Cody GD, Fogel ML, Hazen RM, Hemley RJ, Huntress WT (2002) Microbial activity at gigapascal pressures. Science 295:1514–1516

    Article  CAS  Google Scholar 

  30. Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKa CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  CAS  Google Scholar 

  31. Harris RF (1981) The effect of water potential on microbial growth and activity. In: Parr JF, Gardner WR (eds) Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23–95

    Google Scholar 

  32. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267

    Article  CAS  Google Scholar 

  33. Brown AD (1990) Microbial water stress: physiology: principles and perspectives. Wiley, Chichester

    Google Scholar 

  34. Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  Google Scholar 

  35. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, Alves FDL, La Cono V, Genovese M, Mckew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments. Environ Microbiol 9:801–813

    Article  CAS  Google Scholar 

  36. van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  Google Scholar 

  37. Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:735–805

    Google Scholar 

  38. Möhlmann D (2005) Adsorption of water-related potential chemical and biological processes in the upper martian surface. Astrobiology 5:770–777

    Article  Google Scholar 

  39. Koop T (2002) The water activity of aqueous solutions in equilibrium with ice. Bull Chem Soc Jpn 75:2587–2588

    Article  CAS  Google Scholar 

  40. Robbins EI, Rodgers TM, Alpers CN, Nordstrom DK (2000) Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, USA. Hydrobiologia 433:15–23

    Article  CAS  Google Scholar 

  41. Kelch BA, Eagen KP, Erciyas EP, Humphris EL, Thomason AR, Mitsuiki S, Agard DA (2007) Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J Mol Biol 368:870–883

    Article  CAS  Google Scholar 

  42. Baross JA, Berner SA, Cody GD, Copley SD, Pace NR (2007) The limits of organic life in planetary systems. National Academies Press, Washington, DC

    Google Scholar 

  43. Nichols DS, Greenhill AR, Shadbolt CT, Ross T, McMeekin TA (1999) Physicochemical parameters for growth of the sea ice bacteria Glaciecola punicea ACAM 611t and Gelidibacter sp. strain IC158. Appl Environ Microbiol 65:3757–3760

    CAS  Google Scholar 

  44. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost – an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341

    Article  CAS  Google Scholar 

  45. Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci USA 104:16299–16304

    Article  CAS  Google Scholar 

  46. Schulze-Makuch D, Irwin LN (2008) Life in the Universe. Springer, Heidelberg

    Book  Google Scholar 

  47. Storey KB, Storey JM (1984) Biochemical adaption for freezing tolerance in the wood, Rana sylvatica. J Comp Physiol 155:29–36

    CAS  Google Scholar 

  48. Feinberg G, Shapiro R (1980) Life beyond Earth: the intelligent Earthling’s guide to life in the Universe. William Morrow and Company, Inc., New York

    Google Scholar 

  49. Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167

    Article  CAS  Google Scholar 

  50. Firsoff VA (1963) Life beyond the Earth. Basic Books, Inc., New York

    Google Scholar 

  51. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the Universe? Curr Opin Chem Biol 8:672–689

    Article  CAS  Google Scholar 

  52. Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results re-interpreted. Int J Astrobiol 6:147–152

    Article  CAS  Google Scholar 

  53. Krauskopf KB (1983) Introduction to geochemistry, 2nd edn. McGraw-Hill, London

    Google Scholar 

  54. Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  Google Scholar 

  55. Stumm W, Morgan JJ (1995) Aquatic chemistry – chemical equilibria and rates in natural waters, 3rd edn. Wiley-Blackwell, New York

    Google Scholar 

  56. Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizier of the family Ectothiorhodospiraceae. Extremophiles 15:271–279

    Article  CAS  Google Scholar 

  57. Shelobolina ES, VanPraagh CG, Lovley DR (2003) Use of ferric and ferrous iron containing minerals for respiration by Desulfitobacterium frappieri. Geomicrobiol J 20:143–156

    Article  CAS  Google Scholar 

  58. Warn JRW, Peters APH (1996) Concise chemical thermodynamics, 2nd edn. CRC Press, Boca Raton/London

    Google Scholar 

  59. Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Article  CAS  Google Scholar 

  60. Grinder-Vogel M, Criddle CS, Fendorf S (2006) Thermodynamic constraints on the oxidation of biogenic UO2 by Fe(III) (hydr)oxides. Environ Sci Technol 40:3544–3550

    Article  Google Scholar 

  61. Rogers KL, Amend JP (2005) Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology 3:319–332

    Article  CAS  Google Scholar 

  62. Rogers KL, Amend JP, Gurrieri S (2007) Temporal changes in fluid geochemistry and energy profiles in the Vulcano Island hydrothermal system. Astrobiology 7:905–932

    Article  CAS  Google Scholar 

  63. Nealson KH, Tsapin A, Storrie-Lombardi M (2002) Searching for life in the Universe: unconventional methods for an unconventional problem. Int Microbiol 2:223–230

    Google Scholar 

  64. Hoehler TM (2007) An energy balance concept for habitability. Astrobiology 7:824–838

    Article  CAS  Google Scholar 

  65. Hoehler TM, Amend JP, Shock EL (2007) A “follow the energy” approach to astrobiology. Astrobiology 7:819–823

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Cockell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cockell, C.S., Nixon, S. (2013). The Boundaries of Life. In: Smith, I., Cockell, C., Leach, S. (eds) Astrochemistry and Astrobiology. Physical Chemistry in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31730-9_7

Download citation

Publish with us

Policies and ethics