Skip to main content

The Extended Composer

Creative Reflection and Extension with Generative Tools

  • Chapter
Computers and Creativity

Abstract

This chapter focuses on interactive tools for musical composition which, through computational means, have some degree of autonomy in the creative process. This can engender two distinct benefits: extending our practice through new capabilities or trajectories, and reflecting our existing behaviour, thereby disrupting habits or tropes that are acquired over time. We examine these human-computer partnerships from a number of perspectives, providing a series of taxonomies based on a systems behavioural properties, and discuss the benefits and risks that such creative interactions can provoke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For examples, see the crystal growth of Roman Kirschner’s installations, Hans Haacke’s Condensation Cube (1963–65), or Céleste Boursier-Mougenot’s Untitled (2010), in which zebra finches are given free reign over a gallery of amplified electric guitars.

  2. 2.

    http://www.delicious.com/.

  3. 3.

    For a more complete history of algorithmic composition, we refer the reader to Collins (2009).

  4. 4.

    http://www.spore.com/ftl.

  5. 5.

    http://www.generativemusic.com/.

  6. 6.

    http://intermorphic.com/tools/noatikl/.

  7. 7.

    http://www.native-instruments.com/en/products/producer/absynth-5/.

  8. 8.

    http://cycling74.com/products/maxmspjitter/.

  9. 9.

    http://supercollider.sourceforge.net/.

  10. 10.

    http://impromptu.moso.com.au/.

  11. 11.

    http://www.csse.monash.edu.au/cema/nodal/.

  12. 12.

    http://www.zefrank.com/v_draw_beta/.

  13. 13.

    http://pitaru.com/sws/.

  14. 14.

    http://www.aikon-gold.com/.

  15. 15.

    See Pachet’s discussion of bebop sideslips (Chap. 5) for a more in-depth treatment on how intentional error-like acts can be used to effectively demonstrate virtuosity.

  16. 16.

    Emerson v. Davies, 8 F.Cas. 615, 619 (No. 4,436) (CCD Mass. 1845).

  17. 17.

    “Why console-games are bigger than rock ‘n’ roll”: http://www.youthmusic.org.uk/research-archive.html.

References

  • Ames, C. (1987). Automated composition in retrospect: 1956–1986. Leonardo, 20(2), 169–185.

    Article  MathSciNet  Google Scholar 

  • André, P., Schraefel, M. C., Teevan, J., & Dumais, S. T. (2009). Discovery is never by chance: designing for (un)serendipity. In C&C’09: proceedings of the seventh ACM conference on creativity and cognition (pp. 305–314). New York: ACM.

    Chapter  Google Scholar 

  • Beilhartz, K., & Ferguson, S. (2007). Gestural hyper instrument collaboration with generative computation for real time creativity. In Creativity and cognition (pp. 213–222). Washington: ACM.

    Google Scholar 

  • Berry, R., & Dahlstedt, P. (2003). Artificial life: why should musicians bother? Contemporary Music Review, 22(3), 57–67.

    Article  Google Scholar 

  • Biles, J. (1994). GenJam: A genetic algorithm for generating jazz solos. In Proceedings of the international computer music conference (pp. 131–137).

    Google Scholar 

  • Boden, M. A. (2004). The creative mind: myths and mechanisms. New York: Routledge.

    Google Scholar 

  • Bown, O. (2009). Against individual creativity. In Dagstuhl seminar proceedings 09291. Computational creativity: an interdisciplinary approach, Dagstuhl, Germany.

    Google Scholar 

  • Bown, O., & Lexer, S. (2006). Continuous-time recurrent neural networks for generative and interactive musical performance. In Lecture notes in computer science. Proceedings of EvoWorkshops 2006 (pp. 652–663). Berlin: Springer.

    Google Scholar 

  • Brown, A. R. (2000). Modes of compositional engagement. Mikropolyphonie, 6. http://pandora.nla.gov.au/tep/10054.

  • Brown, A. R. (2001). How the computer assists composers: a survey of contemporary practice. In G. Munro (Ed.), Waveform 2001: the Australasian computer music conference (pp. 9–16). The Australasian computer music association.

    Google Scholar 

  • Brown, A. R. (2002). Opportunities for evolutionary music composition. In Proceedings of the Australasian computer music conference (pp. 27–34).

    Google Scholar 

  • Cage, J. (1968). Silence: lectures and writings. London: Calder and Boyars.

    Google Scholar 

  • Chadabe, J. (1984). Interactive composing: an overview. Computer Music Journal, 8(1), 22–27.

    Article  Google Scholar 

  • Clark, A. (2003). Natural-born cyborgs. Oxford: Oxford University Press.

    Google Scholar 

  • Clark, A. (2008). Supersizing the mind. New York: Oxford University Press.

    Book  Google Scholar 

  • Clark, A., & Chalmers, D. (1998). The extended mind. Analysis, 58(1), 7–19.

    Article  Google Scholar 

  • Cohen, H. (1995). The further exploits of AARON, painter. Stanford Humanities Review, 4(2), 141–158.

    Google Scholar 

  • Cole, T., & Cole, P. (2008) Noatikl. http://www.intermorphic.com/tools/noatikl/index.html.

  • Collins, N. (2009). Introduction to computer music. Chichester: Wiley.

    Google Scholar 

  • Cope, D. (1996). Experiments in musical intelligence. Madison: A-R Editions.

    Google Scholar 

  • Cope, D. (2008). Hidden structure: music analysis using computers. Madison: A-R Editions.

    Google Scholar 

  • Cornock, S., & Edmonds, E. (1973). The creative process where the artist is amplified or superseded by the computer. Leonardo, 6(1), 11–16.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1992). Flow: the psychology of happiness. London: Rider Books.

    Google Scholar 

  • De Bono, E. (1992). Serious creativity: using the power of lateral thinking to create new ideas. London: Harper Collins.

    Google Scholar 

  • Dean, R. (2003). Hyperimprovisation: computer-interactive sound improvisation. Middleton: A-R Editions.

    Google Scholar 

  • Dennett, D. (2001). Collision detection, muselot, and scribbles: some reflections on creativity. In D. Cope (Ed.), Virtual music: computer synthesis of musical style (pp. 282–291). Cambridge: MIT Press.

    Google Scholar 

  • d’Inverno, M., & Luck, M. (2004). Understanding agent systems. Springer series on agent technology. Berlin: Springer.

    MATH  Google Scholar 

  • Eno, B. (1996). Generative music. http://www.inmotionmagazine.com/eno1.html.

  • Eno, B., & Schmidt, P. (1975). Oblique strategies: over 100 worthwhile dilemmas by Brian Eno and Peter Schmidt. London: Apollo.

    Google Scholar 

  • Essl, K. (1992). Lexikon sonate. http://www.essl.at/sounds.html#lexson-porgy.

  • Galanter, P. (2003). What is generative art? complexity theory as a context for art theory. In GA2003—6th generative art conference.

    Google Scholar 

  • Gell, A. (1998). Art and agency: an anthropological theory. Oxford: Clarendon Press.

    Google Scholar 

  • Goel, V. (1995). Sketches of thought. Cambridge: MIT Press.

    Google Scholar 

  • Gudmundsdottir, B. (1996). Björk meets Karlheinz Stockhausen. Dazed and Confused, 23.

    Google Scholar 

  • Hedemann, C., Sorensen, A., & Brown, A. R. (2008). Metascore: user interface design for generative film scoring. In Proceedings of the Australasian computer music conference (pp. 25–30). Australasian computer music association.

    Google Scholar 

  • Heidegger, M. (1977). The question concerning technology and other essays. New York: Harper & Row.

    Google Scholar 

  • Hiller, L. (1968). Music composed with computer[s]: an historical survey. Experimental Music Studio.

    Google Scholar 

  • Hiller, L. A., & Isaacson, L. M. (1958). Musical composition with a high-speed digital computer. Journal of the Audio Engineering Society, 6(3), 154–160.

    Google Scholar 

  • Hodges, A. (1985). Alan Turing: the enigma of intelligence. London: Unwin Paperbacks.

    Google Scholar 

  • Huron, D. (2006). Sweet anticipation: music and the psychology of expectation. Cambridge: MIT Press.

    Google Scholar 

  • Illich, I. (1973). Tools for conviality. London: Valder & Boyars.

    Google Scholar 

  • Jewell, M. O., Rhodes, C., & d’Inverno, M. (2010). Querying improvised music: do you sound like yourself? In ISMIR 2010, Utrecht, NL (pp. 483–488).

    Google Scholar 

  • Jones, D. (2008). AtomSwarm: a framework for swarm improvisation. In Lecture notes in computer science. Proceedings of EvoWorkshops 2008 (pp. 423–432). Berlin: Springer.

    Google Scholar 

  • Jones, D., Matthias, J., Hodgson, T., Outram, N., Grant, J., & Ryan, N. (2009). The fragmented orchestra. In Proceedings of new interfaces for musical expression (NIME 2009) conference, Pittsburgh, PA, USA.

    Google Scholar 

  • Jordà, S., Geiger, G., Alonso, M., & Kaltenbrunner, M. (2007). The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In Proceedings of the first international conference on tangible and embedded interaction (TEI) (pp. 139–146). New York: ACM Press.

    Chapter  Google Scholar 

  • Kittler, F. A. (1999). Gramophone, film, typewriter. Stanford: Stanford University Press.

    Google Scholar 

  • Klee, P. (1972). Pedagogical sketchbook. London: Faber and Faber.

    Google Scholar 

  • Kostelanetz, R. (1989). Conversing with cage. London: Omnibus.

    Google Scholar 

  • Laske, O. (1981). Composition theory in Koenig’s project one and project two. Computer Music Journal, 5(3), 54–65.

    Article  Google Scholar 

  • Latour, B. (1994). On technical mediation. Common Knowledge, 3(2), 29–64.

    Google Scholar 

  • Lewis, G. (2007). On creative machines. In N. Collins & J. d’Escriván (Eds.), The Cambridge companion to electronic music. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lewis, G. E. (2000). Too many notes: computers, complexity and culture in voyager. Leonardo Music Journal, 10, 33–39.

    Article  Google Scholar 

  • Lubart, T. (2005). How can computers be partners in the creative process. International Journal of Human-Computer Studies, 63(4–5), 365–369.

    Article  Google Scholar 

  • Magnusson, T. (2009). Of epistemic tools: musical instruments as cognitive extensions. Organised Sound, 14(2), 168–176.

    Article  Google Scholar 

  • Matthews, H., & Brotchie, A. (2005). The Oulipo compendium. London: Atlas Press.

    Google Scholar 

  • McCormack, J. (1996). Grammar based music composition. In R. Stocker, H. Jelinek, B. Durnota & T. Bossomaier (Eds.), Complex systems 96: from local interactions to global phenomena (pp. 321–336). Amsterdam: ISO Press.

    Google Scholar 

  • McCormack, J. (2003). Evolving sonic ecosystems. Kybernetes, 32(1/2), 184–202.

    Article  Google Scholar 

  • McCormack, J., McIlwain, P., Lane, A., & Dorin, A. (2008). Generative composition with nodal. In E. Miranda (Ed.), Workshop on music and artificial life (part of ECAL 2007), Lisbon, Portugal.

    Google Scholar 

  • McCullough, M. (1996). Abstracting craft: the practiced digital hand. Cambridge: MIT Press.

    Google Scholar 

  • McGraw, G., & Hofstadter, D. (1993). Perception and creation of diverse alphabetic styles. AISB Quarterly, 85, 42–49.

    Google Scholar 

  • McLuhan, M. (1964). Understanding media: the extensions of man. London: Sphere Books.

    Google Scholar 

  • Miranda, E. R., & Matthias, J. (2005). Granular sampling using a Pulse-Coupled network of spiking neurons. In Lecture notes in computer science. Proceedings of EvoWorkshops 2005 (pp. 539–544). Berlin: Springer.

    Google Scholar 

  • Narmour, E. (1990). The analysis and cognition of basic melodic structures. Chicago: University of Chicago Press.

    Google Scholar 

  • Nierhaus, G. (2009). Algorithmic composition: paradigms of automatic music generation. Vienna: Springer.

    Google Scholar 

  • Norman, D. (1991). Cognitive artifacts. In J. M. Carroll (Ed.), Designing interaction: psychology at the human-computer interface (pp. 17–38). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ortolani, B. (1990). The Japanese theatre: from shamanistic ritual to contemporary pluralism. Leiden: E. J. Brill.

    Google Scholar 

  • Pachet, F. (2003). The continuator: musical interaction with style. Journal of New Music Research, 32(3), 333–341.

    Article  Google Scholar 

  • Pólya, G. (1971). How to solve it: a new aspect of mathematical method (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Prévost, E. (2004). Minute particulars: meanings in music—making in the wake of hierarchial realignments and other essays. London: Copula.

    Google Scholar 

  • Pritchett, J. (1993). The music of John Cage. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rowe, R. (1993). Interactive music systems: machine listening and composing. Cambridge: MIT Press.

    Google Scholar 

  • Sawyer, R. K. (2006). Group creativity: musical performance and collaboration. Psychology of Music, 34(2), 148–165.

    Article  Google Scholar 

  • Smith, H., & Dean, R. (1997). Improvisation, hypermedia and the arts since 1945. Amsterdam: Harwood.

    Google Scholar 

  • Spiegel, L. (1981). Manipulations of musical patterns. In Proceedings of the symposium on small computers and the arts (pp. 19–22).

    Google Scholar 

  • Supper, M. (2001). A few remarks on algorithmic composition. Computer Music Journal, 25(1), 48–53.

    Article  Google Scholar 

  • Temperley, D. (2007). Music and probability. Cambridge: MIT Press.

    MATH  Google Scholar 

  • van Andel, P. (1994). Anatomy of the unsought finding. Serendipity: origin, history, domains, traditions, appearances, patterns and programmability. British Journal for the Philosophy of Science, 45(2), 631–648.

    Article  Google Scholar 

  • Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S., & Tuson, A. (1999). Evolutionary methods for musical composition. In D. M. Dubois (Ed.), Partial proceedings of the first international conference CASYS’97 on computing anticipatory systems, Liége, Belgium, August 11–15, 1997. International Journal of Computing Anticipatory Systems.

    Google Scholar 

  • Wiggins, G., Pearce, M., & Mullensiefen, D. (2009). Computational modelling of music cognition and musical creativity. In R. Dean (Ed.), Oxford handbook of computer music (pp. 383–420). Oxford: Oxford University Press.

    Google Scholar 

  • Winkler, T. (1998). Composing interactive music. Cambridge: MIT Press.

    Google Scholar 

  • Woolhouse, M. (2009). Modelling tonal attraction between adjacent musical elements. Journal of New Music Research, 38(4).

    Google Scholar 

  • Xenakis, I. (2001). Formalized music: thought and mathematics in composition. Hillsdale: Pendragon Press.

    Google Scholar 

  • Young, L. M. (Ed.) (1963). An anthology of chance operations. New York: La Monte Young and Jackson Mac Low.

    Google Scholar 

  • Young, M. (2008). NN music: improvising with a ‘living’ computer. In R. Kronland-Martinet (Ed.), Computer music modelling and retrieval: sense of sounds (pp. 337–350). Vienna: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, D., Brown, A.R., d’Inverno, M. (2012). The Extended Composer. In: McCormack, J., d’Inverno, M. (eds) Computers and Creativity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31727-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31727-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31726-2

  • Online ISBN: 978-3-642-31727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics