Advertisement

Average Rate of Return with Uncertainty

  • Maria Letizia Guerra
  • Carlo Alberto Magni
  • Luciano Stefanini
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

In investment appraisal, uncertainty can be managed through intervals or fuzzy numbers. The arithmetical properties and the extension principle are well established and can be successfully applied in a rigorous way. The investments ranking is preferably performed when the decision maker dispone of an interest.

Keywords

investment appraisal Interval Arithmetic Fuzzy Number Arithmetic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlsson, C., Fullér, R.: Possibility for decision. STUDFUZZ. Springer (2011)Google Scholar
  2. 2.
    Chiu, C.Y., Park, C.S.: Fuzzy cash flow analysis using present worth criterion. The Engineering Economist 39(2), 113–138 (1994)CrossRefGoogle Scholar
  3. 3.
    Guerra, M.L., Sorini, L., Stefanini, L.: Fuzzy Investment Decision Making. In: Magdalena, L., Ojeda-Aciego, M., Verdegay, J.L. (eds.) Proceedings of IPMU 2008, pp. 745–750 (2008) ISBN: 978-84-612-3061-7Google Scholar
  4. 4.
    Kuchta, D.: Fuzzy Capital Budgeting. Fuzzy Sets and Systems 111, 367–385 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kuchta, D.: A fuzzy model for R&D project selection with benefit, outcome and resource interactions. The Engineering Economist 46, 164–180 (2001)CrossRefGoogle Scholar
  6. 6.
    Magni, C.A.: Average internal rate of return and investment decisions: a new perspective. The Engineering Economist 55(2), 150–180 (2010) Updated version available at SSN: http://ssrn.com/abstract=1542690 CrossRefGoogle Scholar
  7. 7.
    Markov, S.: Extended interval arithmetic. Compt. Rend. Acad. Bulg. Sci. 30(9), 1239–1242 (1977)zbMATHGoogle Scholar
  8. 8.
    Pohjola, V.J., Turunen, I.: Estimating the interval rate of return from fuzzy data. Engineering Costs and Production Economics 18, 215–221 (1990)CrossRefGoogle Scholar
  9. 9.
    Stefanini, L.: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems 161(11), 1564–1584 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Stefanini, L., Sorini, L., Guerra, M.L.: Fuzzy Numbers and Fuzzy Arithmetics. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 249–283. John Wiley & Sons (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Letizia Guerra
    • 1
  • Carlo Alberto Magni
    • 2
  • Luciano Stefanini
    • 3
  1. 1.Department of MathematicsUniversity of BolognaBolognaItaly
  2. 2.Department of EconomicsUniversity of Modena and Reggio EmiliaModenaItaly
  3. 3.Department of Economics, Society and PoliticsUniversity of Urbino “Carlo Bo”UrbinoItaly

Personalised recommendations