In the modern distributed systems, one of the most important targets is to resolve the job scheduling problem, optimizing the solution. In fact, in a concurrent environment such as distributed systems, jobs synchronization access to shared resources allows CPU time optimization. So, in order to solve this problem, we modeled a new scheduler based on a job scheduling game, in which multiple jobs concur to use multiple CPUs as players of this game model. Every single job payoff is related to total job completion time minimization, allowing system throughput maximization. The implemented model provides integration of Nash Equilibrium to MiniMax solution inspired by the "folk theorem" of Game Theory. This new algorithm has been tested, and results validate decrease of Nash Equilibrium inefficiency for the proposed distributed model.


Scheduling problems Load Balancing Game Theory Folk Theorem Distributed Systems Multi-core Intelligent Complex Systems Mobile Agents System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Myint, C.C., Tun, K.M.L.: A Framework of Using Mobile Agent to Achieve Efficient Load Balancing in Cluster. In: Proceedings of 6th Asia-Pacific Symposium on Information and Telecommunication Technologies, APSITT 2005, November 10, pp. 66–70 (2005), doi:10.1109/APSITT.2005.203632Google Scholar
  2. 2.
    Spata, M.O.: A Nash-Equilibrium Based Algorithm for Scheduling Jobs on a Grid Cluster. In: WETICE 2007, pp. 251–252 (2007)Google Scholar
  3. 3.
    Spata, M.O., Pappalardo, G., Rinaudo, S., Biondi, T.: Agent-Based Negotiation Techniques for a Grid: The Prophet Agents. e-Science 149 (2006)Google Scholar
  4. 4.
    Spata, M.O., Rinaudo, S.: A scheduling Algorithm based on Potential Game for a Cluster Grid. JCIT Journal of Convergence Information Technology (2009)Google Scholar
  5. 5.
    Patrone, F.: Decisori razionali interagenti. Una introduzione alla Teoria dei Giochi - Edizioni PLUS, Pisa (2006) ISBN: 88-8492-350-6Google Scholar
  6. 6.
    Osborne, M.J., Rubinstein, A.: A Course in Game Theory, Par. “Strategic Games”, pag. 9,11,14. The MIT Press (July 12, 1994)Google Scholar
  7. 7.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Ferguson, D., Nikolaou, C., Sairamesh, J., Yemini, Y.: Economic models for allocating resources in computer systems. In: Clearwater, S. (ed.) Market-Based Control: A Paradigm for Distributed Resource Allocation. World Scientific, Hong Kong (1996)Google Scholar
  9. 9.
    Kwok, Y.-K., Song, S., Hwang, K.: Non-Cooperative Grids: Game Theoretic Modeling and Strategy Optimization. Submitted to IEEE Trans. Parallel and Distributed Systems (December 2004)Google Scholar
  10. 10.
    Foundation for Intelligent Physical Agents, FIPA Agent Management Specification & Support for Mobility Specification, Geneva, Switzerland (October 2000),
  11. 11.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences 36, 48–49 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Von Neumann, J.: Zur Theorie der Gesellschaftsspiele. Math. Annalen. 100, 295–320 (1928)zbMATHCrossRefGoogle Scholar
  13. 13.
    Vale, Z.A., Morais, H., Khodr, H.: Intelligent multi-player smart grid management considering distributed energy resources and demand response. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–7 (2010), doi:10.1109/PES.2010.5590170Google Scholar
  14. 14.
    Mohsenian-Rad, A.-H., Wong, V.W.S., Jatskevich, J., Schober, R.: Optimal and autonomous incentive-based energy consumption scheduling algorithm for smart grid. In: Innovative Smart Grid Technologies (ISGT), pp. 1–6 (2010), doi:10.1109/ISGT.2010.5434752Google Scholar
  15. 15.
    Ibars, C., Navarro, M., Giupponi, L.: Distributed Demand Management in Smart Grid with a Congestion Game. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 495–500 (2010), doi:10.1109/SMARTGRID.2010.5622091Google Scholar
  16. 16.
    Aumann, R.J.: Survey of repeated games. In: Aumann, R.J. (ed.) Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, pp. 11–42. Wissenschaftsverlag, Bibliographisches Institut, Mannheim, Wien (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Massimo Orazio Spata
    • 1
  • Salvatore Rinaudo
    • 1
  1. 1.Department: IMS – R&DSTMicroelectronicsCataniaItaly

Personalised recommendations