We deal with the problem of pricing equity-linked life insurance policies under uncertainty of randomness and fuzziness. Firstly, we propose an evaluation method for general life insurance, with stochastic representation of mortality and fuzzy quantification of financial present values, by defining the actuarial value of the liabilities as the expectation of a fuzzy random variable. Then, we apply the suggested methodology to the fair valuation of an equity-linked policy. In such a contract policyholder’s benefits are linked to the performance of a reference fund. We perform the risk neutral valuation in a fuzzy binomial-tree model. The crisp value of the policy is obtained by means of a “defuzzification method” based on possibilistic mean values. A numerical example illustrates how the proposed method allows the actuary to model the fuzziness in the parameters according to his subjective judgement.


Fuzzy numbers Fuzzy random variables Possibilistic mean values Life insurance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Lemaire, J.: Fuzzy insurance. ASTIN Bull. 20, 33–55 (1990)CrossRefGoogle Scholar
  3. 3.
    Terceno, A., De Andres, J., Belvis, C., Barbera, G.: Fuzzy methods incorporated to the study of personal insurances. In: Int. Symp. Neuro-Fuzzy Syst., pp. 187–202 (1996)Google Scholar
  4. 4.
    Ostaszewski, K.: An Investigation into Possible Applications of Fuzzy Sets Methods in Actuarial Science. Society of Actuaries, Schaumburg (1993)Google Scholar
  5. 5.
    Buckley, J.J.: The fuzzy mathematics of finance. Fuzzy Sets and Systems 21, 257–273 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Shapiro, A.F.: Fuzzy logic in insurance. Insurance: Mathematics and Economics 35, 399–424 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hardy, M.: Investment guarantees: Modelling and risk management for equity-linked life insurance. Wiley (2003)Google Scholar
  8. 8.
    Brennan, M.J., Schwartz, E.S.: The pricing of equity-linked life insurance policies with an asset value guarantee. J. Finan. Econ. 3, 195–213 (1976)CrossRefGoogle Scholar
  9. 9.
    Hull, J.C.: Options, Futures, and Other Derivatives. Prentice Hall (2003)Google Scholar
  10. 10.
    Cox, J.C., Ross, S.A., Rubinstein, M.: Option Pricing: A Simplified Approach. Journal of Financial Economics 7, 229–263 (1979)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kwakernaak, H.: Fuzzy random variables. Part I: definitions and theorems. Inform. Sci. 15, 1–29 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kwakernaak, H.: Fuzzy random variables. Part II: algorithms and examples for the discrete case. Inform. Sci. 17, 253–278 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Kruse, R., Meyer, K.D.: Statistics with Vague Data. Reidel Publ. Co. (1987)Google Scholar
  14. 14.
    Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Journal of Mathematical Analysis and Applications 114, 409–422 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    de Andrés-Sánchez, J., González-Vila Puchades, L.: Using fuzzy random variables in life annuities pricing. Fuzzy Sets and Systems 188, 27–44 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Carlsson, C., Fuller, R.: On possibilistic mean value and variance of fuzzy numbers. Fuzzy Sets and Systems 122, 315–326 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Fuller, R., Majlender, P.: On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Sets and Systems 136, 363–374 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bodjanova, S.: Median value and median interval of a fuzzy number. Information Sciences 172, 73–89 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Gil, M.Á., López-Díaz, M., Ralescu, D.A.: Overview on the Development of Fuzzy Random Variables. Fuzzy Sets and Systems 157, 2546–2557 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Gerber, H.U.: Life Insurance Mathematics. Springer, Berlin (1995)zbMATHGoogle Scholar
  21. 21.
    Kaufmann, A., Gupta, M.M.: Introduction to fuzzy arithmetic. Theory and applications. Van Nostrand Reinhold Company Inc. (1985)Google Scholar
  22. 22.
    Muzzioli, S., Torricelli, C.: A multiperiod binomial model for pricing options in a vague world. Journal of Economic Dynamics and Control 28, 861–887 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Muzzioli, S., Reynaerts, H.: The solution of fuzzy linear systems by non linear programming: a financial application. European Journal of Operational Research 177, 1218–1231 (2007)zbMATHCrossRefGoogle Scholar
  24. 24.
    Muzzioli, S., Reynaerts, H.: American option pricing with imprecise risk-neutral probabilities. International Journal of Approximate Reasoning 49, 140–147 (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Yoshida, Y.: A discrete-time model of American put option in an uncertain environment. European Journal of Operational Research 151, 153–166 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Buckley, J.J., Qu, Y.: Solving systems of linear fuzzy equations. Fuzzy Sets and Systems 43, 33–43 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Melnikov, A.: Risk Analysis in Finance and Insurance. Chapman & Hall (2003)Google Scholar
  28. 28.
    Bacinello, A.R.: Endogenous model of surrender conditions in equity-linked life insurance. Insurance: Mathematics and Economics 37, 270–296 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedge. Journal of Cybernetics 2, 4–34 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Anzilli
    • 1
  1. 1.Department of Economics, Mathematics and StatisticsUniversity of SalentoLecceItaly

Personalised recommendations