Advertisement

Distance–Based Characterization of Inconsistency in Pairwise Comparisons

  • Michele Fedrizzi
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

This paper deals with the evaluation of preference consistency in decision making, assuming that decision makers express their preferences by means of pairwise comparisons in the set of alternatives. Preferences can be expressed using one of the various known representations, such as fuzzy preference relations or multiplicative pairwise comparison matrices. A geometrical characterization of inconsistency evaluation is proposed by considering a pairwise comparison matrix as a point in the vector space of square matrices of order n and by using different metrics to measure deviation of this matrix from full consistency. An inconsistency index is defined as the minimum distance of a pairwise comparison matrix from a consistent one, according to a fixed metric. Consequently, to each choice of a particular metric corresponds an inconsistency index. Geometrical properties of the subset of consistent matrices are investigated.

Keywords

consistency pairwise comparison matrix inconsistency index 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barzilai, J.: Consistency measures for pairwise comparison matrices. Journal of Multi-Criteria Decision Analysis 7, 123–132 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Brunelli, M., Fedrizzi, M.: Characterizing properties of inconsistency indices for pairwise comparison matrices. Submitted to European Journal of Operational Research (2011)Google Scholar
  3. 3.
    Brunelli, M., Canal, L., Fedrizzi, M.: Inconsistency indices for pairwise comparison matrices: a numerical study. Submitted to Annals of Operations Research (2011)Google Scholar
  4. 4.
    Cavallo, B., D’Apuzzo, L.: Characterizations of Consistent Pairwise Comparison Matrices over Abelian Linearly Ordered Groups. International Journal of Intelligent Systems 25, 1035–1059 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cavallo, B., D’Apuzzo, L., Squillante, M.: About a consistency index for Pairwise Comparison Matrices over a divisible alo-group. International Journal of Intelligent Systems 27, 153–175 (2012)CrossRefGoogle Scholar
  6. 6.
    Chiclana, F., Herrera, F., Herrera-Viedma, H.: Integrating multiplicative preference relations in a multipurpose decision-making model based on fuzzy preference relations. Fuzzy Sets and Systems 122, 277–291 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Choo, E.U., Wedley, W.C.: A common framework for deriving preference values from pairwise comparison matrices. Computers and Operations Research 31, 893–908 (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Chu, A.T.W., Kalaba, R.E., Springarn, K.: A comparison of two methods for determining the weights of belonging to fuzzy sets. Journal of Optimization Theory and Applications 27, 321–538 (1979)CrossRefGoogle Scholar
  9. 9.
    Chu, M.T.: On the optimal consistent approximation to pairwise comparison matrices. Linear Algebra and its Applications 272, 155–168 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cook, W.D., Kress, M.: Deriving weights from pairwise comparison ratio matrices: An axiomatic approach. European Journal of Operational Research 37, 355–362 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Crawford, G., Williams, C.: A note on the analysis of subjective judgement matrices. Journal of Mathematical Psychology 29, 25–40 (1985)CrossRefGoogle Scholar
  12. 12.
    Fedrizzi, M.: On a consensus measure in a group MCDM problem. In: Kacprzyk, J., Fedrizzi, M. (eds.) Multiperson Decision Making Models using Fuzzy Sets and Possibility Theory, Theory and Decision Library. Series B: Mathematical and Statistical Methods, vol. 18, pp. 231–241. Kluwer Academic Publ., Dortrecht (1990), http://www.unitn.it/files/download/10528/9_2010.pdf CrossRefGoogle Scholar
  13. 13.
    Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A.: On the issue of consistency in dynamical consensual aggregation. In: Bouchon Meunier, B., Gutierrez Rios, J., Magdalena, L., Yager, R.R. (eds.) Technologies for Constructing Intelligent Systems. STUDFUZZ, vol. 89, pp. 129–137. Springer, Heidelberg (2002)Google Scholar
  14. 14.
    Fichtner, J.: Some thoughts about the mathematics of the analytic hierarchy process. Report 8403, Institut für Angewandte Systemforschung und Operations Research, Hochschule der Bundeswehr München (1984)Google Scholar
  15. 15.
    Fichtner, J.: On deriving priority vectors from matrices of pairwise comparisons. Socio–Econ. Plann. Sci. 20, 341–345 (1986)CrossRefGoogle Scholar
  16. 16.
    Gantmacher, F.R.: The theory of matrices, Chelsea, vol. 1 (1959)Google Scholar
  17. 17.
    Golden, B.L., Wang, Q.: An alternate measure of consistency. In: Golden, B.L., Wasil, E.A., Harker, P.T. (eds.) The Analythic Hierarchy Process, Applications and Studies, pp. 68–81. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  18. 18.
    Koczkodaj, W.W.: A new definition of consistency or pairwise comparisons. Mathematical & Computer Modelling 18, 79–84 (1993)zbMATHCrossRefGoogle Scholar
  19. 19.
    Koczkodaj, W.W., Orlowski, M.: An orthogonal basis for computing a consistent approximation to a pairwise comparison matrix. Computers Math. Applic. 34, 41–47 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Peláez, J.I., Lamata, M.T.: A new measure of consistency for positive reciprocal matrices. Computers and Mathematics with Applications 46, 1839–1845 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Ramík, J., Korviny, P.: Inconsistency of pair-wise comparison matrix with fuzzy elements on the geometric mean. Fuzzy Sets and Systems 161, 1604–1613 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Saaty, T.L.: Highlights and critical points in the theory and application of the Analytic Hierarchy Process. European Journal of Operational Research 74, 426–447 (1994)zbMATHCrossRefGoogle Scholar
  23. 23.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Shiraishi, S., Obata, T., Daigo, M.: Properties of a positive reciprocal matrix and their application to AHP. Journal of the Operations Research Society of Japan 41, 404–414 (1998)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Stein, W.E., Mizzi, P.J.: The harmonic consistency index for the analythic hierarchy process. European Journal of Operational Research 177, 488–497 (2007)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michele Fedrizzi
    • 1
  1. 1.Department of Computer and Management SciencesUniversity of TrentoTrentoItaly

Personalised recommendations