Advertisement

Finding Optimal Presentation Sequences for a Conversational Recommender System

  • Núria Bertomeu Castelló
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

This paper presents an approach for finding optimal presentation sequences in conversational Recommender Systems. The strategies simultaneously pursuit the goals of acquainting the user with the different possibilities, successfully accomplishing the task in the shortest possible time, and obtaining an accurate user model. The approach is modeled as an MDP where the states include belief states about the acceptability of the different alternatives, modeled as Bayesian networks.

Keywords

presentation strategy Recommender System predictive user model Active Learning Markov Decision Process Bayesian network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adolphs, P., Benz, A., Bertomeu, N., Cheng, X., Klüwer, T., Krifka, M., Strekalova, A., Uszkoreit, H., Xu, F.: Conversational Agents in a Virtual World. In: Bach, J., Edelkamp, S. (eds.) KI 2011. LNCS, vol. 7006, pp. 38–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bertomeu, N., Benz, A.: Annotation of joint projects and information states in human-NPC dialogue. In: Proc. of the 1st International Conference on Corpus Linguistics, CILC 2009, Murcia, pp. 723–740 (2009)Google Scholar
  3. 3.
    Benz, A., Bertomeu, N., Strekalova, A.: A decision-theoretic approach to finding optimal responses to over-constrained queries in a conceptual search space. In: Proc. of the 15th Workshop on the Semantics and Pragmatics of Dialogue, Los Angeles, pp. 37–46 (2011)Google Scholar
  4. 4.
    Boutilier, C., Dean, T., Hanks, S.: Decision-Theoretic Planning: Structural Assumptions and Computational Leverage. Journal of Artificial Intelligence 11, 1–94 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cassandra, A.R., Littman, M.L., Zhang, N.L.: Acting Optimally in Partially Observable Stochastic Domains. In: Proc. of the 12th National Conference on Artificial Intelligence, Seattle (1994)Google Scholar
  6. 6.
    McSherry, D.: Similarity and Compromise. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 29–305. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  8. 8.
    Rieser, V., Lemon, O.: Learning Effective Multimodal Dialogue Strategies from Wizard-of-Oz data: Bootstrapping and Evaluation. In: Proc. of the 46th Annual Meeting of the Association for Computational Linguistics, Columbus (2008)Google Scholar
  9. 9.
    Rubens, N., Kaplan, D., Sugiyama, M.: Active Learning in Recommender Systems. In: Richi, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Handbook of Recommender Systems. Springer, New York (2011)Google Scholar
  10. 10.
    Rubens, N., Tomioka, R., Sugiyama, M.: Output divergence criterion for active learning in collaborative settings. IPSJ Transactions on Mathematical Modeling and Its Applications 2(3), 87–96 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Núria Bertomeu Castelló
    • 1
  1. 1.Zentrum für Allgemeine SprachwissenschaftBerlinGermany

Personalised recommendations