Advertisement

An Axiomatization of the Choquet Integral and Its Utility Functions without Any Commensurability Assumption

  • Christophe Labreuche
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

We propose an axiomatization of global utility functions that can be factorized as a composition of a Choquet integral with local utility functions, without assuming any commensurability condition. This was an open problem in the literature. The main axiom, called Commensurability Through Interaction (CTI), allows to construct commensurate sequences and by consequence, the utility functions, thanks to the presence of interaction between criteria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmeidler, D.: Integral representation without additivity. Proc. of the Amer. Math. Soc. 97(2), 255–261 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, pp. 1329–1379. Elsevier Science (2002)Google Scholar
  3. 3.
    Couceiro, M., Marichal, J.: Axiomatizations of lovász extensions of pseudo-Boolean functions. Fuzzy Sets and Systems 181, 28–38 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Marichal, J.L.: An axiomatic approach of the discrete Choquet integral as a tool to aggregate interacting criteria. IEEE Tr. on Fuzzy Systems 8(6), 800–807 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Couceiro, M., Marichal, J.: Axiomatizations of quasi-lovász extensions of pseudo-Boolean functions. Aequationes Mathematicae 82, 213–231 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals. Theory and Applications (edited volume). STUDFUZZ. Physica Verlag (2000)Google Scholar
  8. 8.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (III): interaction index. In: 9th Fuzzy System Symposium, Sapporo, Japan, pp. 693–696 (May 1993)Google Scholar
  10. 10.
    Labreuche, C., Grabisch, M.: The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets & Systems 137, 11–26 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christophe Labreuche
    • 1
  1. 1.Thales Research & TechnologyPalaiseau CedexFrance

Personalised recommendations