Advertisement

Choquet Integration and the AHP: Inconsistency and Non-additivity

  • Silvia Bortot
  • Ricardo Alberto Marques Pereira
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

We propose to extend the aggregation scheme of the AHP, from the standard weighted averaging to the more general Choquet integration. In our model, a measure of dominance inconsistency between criteria is derived from the main pairwise comparison matrix of the AHP and it is used to construct a non-additive capacity, whose associated Choquet integral reduces to the standard weighted mean of the AHP in the consistency case. In the general inconsistency case, however, the new AHP aggregation scheme based on Choquet integration tends to attenuate (resp. emphasize) the priority weights of the criteria with higher (resp. lower) average dominance inconsistency with the other criteria.

Keywords

Aggregation functions multiple criteria analysis AHP inconsistency 2-additive capacities Choquet integral Shapley values 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barzilai, J.: Consistency measures for pairwise comparison matrices. Journal of Multi-Criteria Decision Analysis 7(3), 123–132 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ, vol. 221. Springer, Heidelberg (2007)Google Scholar
  3. 3.
    Berrah, L., Clivillé, V.: Towards an aggregation performance measurement system model in a supply chain context. Computers in Industry 58(7), 709–719 (2007)CrossRefGoogle Scholar
  4. 4.
    Berrah, L., Mauris, G., Montmain, J.: Monitoring the improvement of an overall industrial performance based on a Choquet integral aggregation. Omega 36(3), 340–351 (2008)CrossRefGoogle Scholar
  5. 5.
    Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operators: New Trends and Applications. STUDFUZZ, vol. 97. Physica-Verlag, Heidelberg (2002)zbMATHGoogle Scholar
  6. 6.
    Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1953)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Clivillé, V., Berrah, L., Mauris, G.: Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. International Journal of Production Economics 105(1), 171–189 (2007)CrossRefGoogle Scholar
  8. 8.
    Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69(3), 279–298 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Grabisch, M.: The application of fuzzy integrals in multicriteria decision making. European Journal of Operational Research 89(3), 445–456 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Grabisch, M.: k-order additive discrete fuzzy measures and their representation. Fuzzy Sets and Systems 92(2), 167–189 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Grabisch, M.: Alternative representations of discrete fuzzy measures for decision making. International Journal of Uncertainty, Fuzzyness and Knowledge-Based Systems 5(5), 587–607 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grabisch, M., Kojadinovich, I., Meyer, P.: A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package. European Journal of Operational Research 186(2), 766–785 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in MCDA. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis, pp. 563–604. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. 4OR 6(1), 1–44 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations Research 175(1), 247–286 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions, Encyclopedia of Mathematics and its Applications, vol. 127. Cambridge University Press (2009)Google Scholar
  17. 17.
    Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measure and Integrals: Theory and Applications. Physica-Verlag (2000)Google Scholar
  18. 18.
    Grabisch, M., Nguyen, H.T., Walker, E.A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  19. 19.
    Grabisch, M., Roubens, M.: An axiomatic approach to the concept of interaction among players in cooperative games. Int. J. of Game Theory 28(4), 547–565 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Marichal, J.L.: Aggregation operators for multicriteria decision aid. Ph.D. Thesis, University of Liège, Liège, Belgium (1998)Google Scholar
  21. 21.
    Marques Pereira, R.A., Bortot, S.: Choquet measures, Shapley values, and inconsistent pairwise comparison matrices: an extension of Saaty’s A.H.P. In: Proc. 25th Linz Seminar on Fuzzy Set Theory: Mathematics of Fuzzy Systems, Linz, Austria, pp. 130–135 (2004)Google Scholar
  22. 22.
    Marques Pereira, R.A., Ribeiro, R.A., Serra, P.: Rule correlation and Choquet integration in fuzzy inference systems. International Journal of Uncertainty, Fuzzyness and Knowledge-Based Systems 16(5), 601–626 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Mayag, B., Grabisch, M., Labreuche, C.: A representation of preferences by the Choquet integral with respect to a 2-additive capacity. Theory and Decision 71(3), 297–324 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mayag, B., Grabisch, M., Labreuche, C.: A characterization of the 2-additive Choquet integral through cardinal information. Fuzzy Sets and Systems 184(1), 84–105 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Miranda, P., Grabisch, M.: Optimization issues for fuzzy measures. International Journal of Uncertainty, Fuzzyness and Knowledge-Based Systems 7(6), 545–560 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Miranda, P., Grabisch, M., Gil, P.: Axiomatic structure of k-additive capacities. Mathematical Social Sciences 49(2), 153–178 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebeite 2(4), 340–368 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15(3), 234–281 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Saaty, T.L.: Axiomatic foundation of the analytic hierarchy process. Management Science 32(7), 841–855 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Saaty, T.L.: Multicriteria Decision Making: The Analytic Hierarchy Process. RWS Publications, Pittsburgh (1988); Original version published by McGraw-Hill (1980)Google Scholar
  31. 31.
    Saaty, T.L., Vargas, L.G.: Prediction, Projection and Forecasting. Kluwer Academic Publishers, Norwell (1991)Google Scholar
  32. 32.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games. Annals of Mathematics Studies, vol. II, pp. 307–317. Princeton University Press, NJ (1953)Google Scholar
  33. 33.
    Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Springer, New York (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Silvia Bortot
    • 1
  • Ricardo Alberto Marques Pereira
    • 1
  1. 1.Dipartimento di Informatica e Studi AziendaliUniversità degli Studi di TrentoTrentoItaly

Personalised recommendations