Exchangeability in Probability Logic

  • Christian Wallmann
  • Gernot D. Kleiter
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)


The paper investigates exchangeability in the context of probability logic. We study generalizations of basic inference rules and inferences involving cardinalities. We compare the results with those obtained in the case in which only identical probabilities are assumed.


Exchangeability Probability logic Generalized inference rules Interval probabilities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Capotorti, A., Lad, F., Sanfilippo, G.: Reassessing accuracy rates of median decisions. The American Statistician 61(2), 132–138 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    De Finetti, B.: Theory of Probability. A Critical Introductory Treatment, vol. 1. Wiley, New York (1974)zbMATHGoogle Scholar
  3. 3.
    De Finetti, B.: Theory of Probability. A Critical Introductory Treatment, vol. 2. Wiley, New York (1975)zbMATHGoogle Scholar
  4. 4.
    De Finetti, B.: Foresight: Its logical laws, its subjective sources. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, vol. 1, pp. 134–174. Springer, New York (1992 orig. 1937)CrossRefGoogle Scholar
  5. 5.
    Gilio, A.: Probabilistic reasoning under coherence in System P. Ann. Math. Artif. Intell. 34, 5–34 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gilio, A.: Generalization of inference rules in coherence-based probabilistic default reasoning. International Journal of Approximate Reasoning 53, 413–434 (2012)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lad, F.: Operational Subjective Statistical Methods. Wiley, New York (1996)zbMATHGoogle Scholar
  8. 8.
    Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence 44, 167–207 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Pfeifer, N., Kleiter, G.D.: Inference in conditional probability logic. Kybernetika 42, 391–404 (2006)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Tweney, R.D., Doherty, M.E., Kleiter, G.D.: The pseudodiagnosticity trap: Should subjects consider alternative hypotheses? Thinking and Reasoning 16, 332–345 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christian Wallmann
    • 1
  • Gernot D. Kleiter
    • 1
  1. 1.Department of PsychologyUniversity of SalzburgSalzburgAustria

Personalised recommendations