Coherent Conditional Previsions and Proper Scoring Rules

  • Veronica Biazzo
  • Angelo Gilio
  • Giuseppe Sanfilippo
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)


In this paper we study the relationship between the notion of coherence for conditional prevision assessments on a family of finite conditional random quantities and the notion of admissibility with respect to bounded strictly proper scoring rules. Our work extends recent results given by the last two authors of this paper on the equivalence between coherence and admissibility for conditional probability assessments. In order to prove that admissibility implies coherence a key role is played by the notion of Bregman divergence.


Conditional prevision assessments coherence proper scoring rules conditional scoring rules weak dominance strong dominance admissibility Bregman divergence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agró, G., Lad, F., Sanfilippo, G.: Sequentially forecasting economic indices using mixture linear combinations of EP distributions. Journal of Data Science 8(1), 101–126 (2010)Google Scholar
  2. 2.
    Biazzo, V., Gilio, A., Sanfilippo, G.: Generalized coherence and connection property of imprecise conditional previsions. In: Proceedings of IPMU 2008, Malaga, Spain, June 22-27, pp. 907–914 (2008)Google Scholar
  3. 3.
    Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford Univ. Press, Oxford (1997)zbMATHGoogle Scholar
  4. 4.
    de Finetti, B.: Does it make sense to speak of ‘good probability appraisers’? In: Good, I.J. (ed.) The Scientist Speculates: An Anthology of Partly-Baked Ideas, pp. 357–364. Heinemann, London (1962)Google Scholar
  5. 5.
    Gilio, A., Sanfilippo, G.: Coherent conditional probabilities and proper scoring rules. In: Proc. of ISIPTA 2011, Innsbruck, Austria, July 25-28, pp. 189–198 (2011)Google Scholar
  6. 6.
    Gneiting, T., Raftery, A.: Strictly proper scoring rules, prediction and estimation. J. Amer. Statist. Assoc. 102(477), 359–378 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lad, F.: Operational Subjective Statistical Methods: a mathematical, philosophical, and historical introduction. John Wiley, New York (1996)zbMATHGoogle Scholar
  8. 8.
    Lindley, D.V.: Scoring rules and the inevitability of probability. Int. Statist. Rev. 50, 1–11 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Predd, J.B., Seiringer, R., Lieb, E.H., Osherson, D.N., Poor, H.V., Kulkarni, S.R.: Probabilistic Coherence and Proper Scoring Rules. IEEE T. Inform. Theory 55, 4786–4792 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Savage, L.J.: Elicitation of personal probabilities and expectations. J. Amer. Statist. Assoc. 66, 783–801 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Schervish, M.J., Seidenfeld, T., Kadane, J.B.: Proper Scoring Rules, Dominated Forecasts, and Coherence. Decision Analysis 6(4), 202–221 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Veronica Biazzo
    • 1
  • Angelo Gilio
    • 2
  • Giuseppe Sanfilippo
    • 3
  1. 1.University of CataniaCataniaItaly
  2. 2.University of Rome “La Sapienza”RomeItaly
  3. 3.University of PalermoPalermoItaly

Personalised recommendations