Advertisement

A Further Empirical Study on the Over-Performance of Estimate Correction in Statistical Matching

  • Andrea Capotorti
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)

Abstract

Usual estimates inside the statistical matching problem can encounter consistency problem whenever logical constraints are present among categorical variables. Inconsistencies correction through a specific discrepancy minimization has already shown, in terms of goodness-of-fit test, an empirical over-performance with respect to originally coherent assessments. This behavior is now confirmed also with respect to distances between imprecise estimates and imprecise models represented by credal sets of joint distributions.

Keywords

Incoherence correction statistical matching informative distance credal sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abellan, J., Gomez, M.: Measures of divergence on credal sets. Fuzzy Sets and Systems 157, 1514–1531 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Brozzi, A., Capotorti, A., Vantaggi, B.: Incoherence Correction Strategies in Statistical Matching. Int. Journ. of Approximate Reasoning (in press) (extended version of the omonimous paper by Capotorti, A. Vantaggi, B.: Proc. of 7th Int. Symp. on Imprecise Probability, ISIPTA 2011, pp.109–118 (2011))Google Scholar
  3. 3.
    Capotorti, A., Vantaggi, B.: Correction of Incoherences in Statistical Matching. In: Cerciello, P., Tarantola, C. (eds.) CLADAG 2011 Book of Abstract, p. 5. Pavia University Press, Pavia (2011) ISBN: 978-88-96764-22-0 Google Scholar
  4. 4.
    Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting. Trends in Logic. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  5. 5.
    de Finetti, B.: Sull’Impostazione Assiomatica del Calcolo delle Probabilità. Annali Univ. Trieste 19, 3–55 (1949); Engl. transl. in: ch. 5 of Probability, Induction, Statistics. Wiley, London (1972)Google Scholar
  6. 6.
    D’Orazio, M., Di Zio, M., Scanu, M.: Statistical Matching: Theory and Practice. Wiley (2006)Google Scholar
  7. 7.
    Gilio, A., Sanfilippo, G.: Coherent Conditional Probabilities and Proper Scoring Rules. In: Proc. of 7th Int. Symp. on Imprecise Probability, ISIPTA 2011, pp. 189–198 (2011)Google Scholar
  8. 8.
    Irpino, A., Tontodonato, V.: Clustering Reduced Interval Data Using Hausdorff Distance. Computational Statistics 21, 241–288 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lad, F.: Operational Subjective Statistical Methods: a mathematical, philosophical, and historical introduction. Wiley, New York (1996)zbMATHGoogle Scholar
  10. 10.
    Levi, I.: The Enterprise of Knowledge. MIT Press, London (1980)Google Scholar
  11. 11.
    Rubin, D.B.: Statistical Matching Using File Concatenation with Adjusted Weights and Multiple Imputations. J. of Business & Economic Statistics 2, 87–94 (1986)Google Scholar
  12. 12.
    Vantaggi, B.: Statistical Matching of Multiple Sources: A look through coherence. Int. J. of Approx. Reasoning 49(3), 701–711 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Walley, P.: Measures of Uncertainty in Expert Systems. Artificial Intelligence 83(1), 1–58 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrea Capotorti
    • 1
  1. 1.Dip. Matematica e InformaticaUniversità di PerugiaPerugiaItaly

Personalised recommendations