Finitely Additive FTAP under an Atomic Reference Measure

  • Patrizia Berti
  • Luca Pratelli
  • Pietro Rigo
Part of the Communications in Computer and Information Science book series (CCIS, volume 300)


Let L be a linear space of real bounded random variables on the probability space \((\Omega,\mathcal{A},P_0)\). A finitely additive probability P on \(\mathcal{A}\) such that
$$ P\sim P_0 \text{ and } E_P(X)=0\text{ for each }X\in L $$

is called EMFA (equivalent martingale finitely additive probability). In this note, EMFA’s are investigated in case P 0 is atomic. Existence of EMFA’s is characterized and various examples are given. Given y ∈ ℝ and a bounded random variable Y, it is also shown that \(X_n+y\overset{a.s.}\longrightarrow Y\), for some sequence (X n ) ⊂ L, provided EMFA’s exist and E P (Y) = y for each EMFA P.


Equivalent martingale measure Finitely additive probability Fundamental theorem of asset pricing Price uniqueness 

2000 Mathematics Subject Classification

60A05 60A10 28C05 91B25 91G10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Back, K., Pliska, S.R.: On the fundamental theorem of asset pricing with an infinite state space. J. Math. Econ. 20, 1–18 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berti, P., Rigo, P.: Integral representation of linear functionals on spaces of unbounded functions. Proc. Amer. Math. Soc. 128, 3251–3258 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berti, P., Regazzini, E., Rigo, P.: Strong previsions of random elements. Statist. Methods Appl. 10, 11–28 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Berti, P., Rigo, P.: Convergence in distribution of non measurable random elements. Ann. Probab. 32, 365–379 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berti, P., Pratelli, L., Rigo, P.: Finitely additive equivalent martingale measures. J. Theoret. Probab. (to appear, 2012),
  6. 6.
    Dalang, R., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. and Stoch. Reports 29, 185–201 (1990)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Annalen 300, 463–520 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Delbaen, F., Schachermayer, W.: The mathematics of arbitrage. Springer (2006)Google Scholar
  9. 9.
    Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econom. Theory 20, 381–408 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jacka, S.D.: A martingale representation result and an application to incomplete financial markets. Math. Finance 2, 23–34 (1992)CrossRefGoogle Scholar
  11. 11.
    Kreps, D.M.: Arbitrage and equilibrium in economics with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. Henri Poincaré −Probab. et Statist. 26, 451–460 (1990)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Tehranchi, M.R.: Characterizing attainable claims: a new proof. J. Appl. Probab. 47, 1013–1022 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patrizia Berti
    • 1
  • Luca Pratelli
    • 2
  • Pietro Rigo
    • 3
  1. 1.Dipartimento di Matematica Pura ed Applicata “G. Vitali”Università di Modena e Reggio-EmiliaModenaItaly
  2. 2.Accademia NavaleLivornoItaly
  3. 3.Dipartimento di Matematica “F. Casorati”Università di PaviaPaviaItaly

Personalised recommendations