Advertisement

Abstract

The allocation of wealth in an investment portfolio can be viewed as finding a proper weight allocation vector while obeying investment constraints and preferences, as risk aversion, expected returns, investment sector preferences and regulatory and/or preferential limits on allocation per stock. It is these constraints and preferences that make the stock (or wealth) allocation problem a multiple criteria problem.

We link these allocations to the theory of inequality and related concentration measurements, focusing on weight concentration as an other criterion for investment portfolio management. In this paper, we will discuss the Gini and the Herfindhal concentration measures of weights and relate them to the portfolio allocation problem using a hypothetical investment portfolio.

Keywords

Portfolio management Concentration measures Pretension level Gini index Herfindhal index Weights allocation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bourguignon, F., Morrisson, C.: Inequality and Development: the role of dualism. J. Dev. Eco. 57 (1988)Google Scholar
  2. 2.
    Brands, S., Brown, S.J., Gallagher, D.R.: Portfolio Concentration and Investment Manager Performance. NYU Working Paper No. (March 2004)Google Scholar
  3. 3.
    Cowell, F.: Measuring Inequality. Oxford University Press (2009)Google Scholar
  4. 4.
    Dagum, C.: A new Approach to the Decomposition of the Gini Income Inequality Ratio. Emp. Eco. 22 (1997)Google Scholar
  5. 5.
    Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Methodology for Sorting Problems in Presence of Multiple Attributes and Criteria. Eur. J. Op. Res. (2002)Google Scholar
  6. 6.
    Mussard, S., Terraza, V.: Methodes de Decomposition de la Volatilite d’un Portefeuille. Une Nouvelle Approche d’Estimation des Risques par l’Indice de Gini. Rev. Eco. Pol. 114, 557–571 (2004)Google Scholar
  7. 7.
    Ogryczak, W.: Multicriteria Models for Fair Resource Allocation. Con. Cyb. Rev. 36 (2007)Google Scholar
  8. 8.
    Simonelli, M.R.: Indeterminacy in Portfolio Selection. Eur. J. Op. Res. 163, 170–176 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yitzhak, S., Lerman, R.: Income Inequality Effects by Income Source: A New Approach and Applications to the United States. Rev. Eco. Stat. 67(1), 151–156 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ghassan Chammas
    • 1
  • Jaap Spronk
    • 1
  1. 1.Rotterdam School of ManagementErasmus UniversityRotterdamThe Netherlands

Personalised recommendations