Text Retrieval and Visualization in Databases Using Tag Clouds

  • Ursula Torres-Parejo
  • Jesús Roque Campaña
  • Maria-Amparo Vila
  • Miguel Delgado
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)


This paper proposes a novel text information retrieval and visualization approach. This method allows users to browse and query texts in databases in a simple and efficient way. To facilitate content identification, the attractive design of tag clouds has been combined with an innovative text representation structure developed by our research group. This structure stems from the semantics in text representation since it keeps terms together and does not activate them separately. This structure has also been improved by the inclusion of both term order and term weight. Our proposal thus provides a more accurate form of querying and visualization by means of tag clouds.


Semantic search knowledge visualization multi-term tag cloud unstructured databases content identification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campaña, J.R., Medina, J.M., Vila, M.A.: Semantic Processing of Database Textual Attributes using Wikipedia. Flexible Query Answering Systems, 84–95 (2011)Google Scholar
  2. 2.
    Marín, N., Martín-Bautista, M.J., Prados, M., Vila, M.A.: Enhancing Short Text Retrieval in Databases. In: Proc. Flexible Query Answering Systems, pp. 613–624 (2006)Google Scholar
  3. 3.
    Martín-Bautista, M.J., Martinez-Folgoso, S., Vila, M.A.: A New Semantic Representation for Short Texts. In: 10th International Conference on Data Warehousing and Knowledge Discovery, pp. 347–356 (2008)Google Scholar
  4. 4.
    Viégas, F., Wattenberg, M.: TIMELINES Tag Clouds and the Case for Vernacular Visualization. Interactions 15, 49–52 (2008)CrossRefGoogle Scholar
  5. 5.
    Agili, A., Fabbri, M., Panunzi, A., Zini, M.: Integration of a Multilingual Keyword Extractor in a Document Management System. In: Proceedings of the Sixth International Conference on Language Resources and Evaluation (2008)Google Scholar
  6. 6.
    Sinclair, J., Cardew-Hall, M.: The Folksonomy Tag Cloud: When is it useful? Journal of Information Science 34, 15–30 (2008)CrossRefGoogle Scholar
  7. 7.
    Hassan-Montero, Y., Herrera-Solana, V.: Improving Tag-Clouds as Visual Information Retrieval Interfaces. In: International Conference on Multidisciplinary Information Sciences and Technologies, pp. 25–28 (2006)Google Scholar
  8. 8.
    Xexéo, G., Morgado, F., Fiuza, P.: Automatically Generated Tag Clouds. In: XXIV Simpósio Brasileiro de Banco de Dados (2009)Google Scholar
  9. 9.
    Agrawal, R., Srikant, R.: Fast algorithms form mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases, pp. 487–499 (1994)Google Scholar
  10. 10.
    Martínez, S.: Una Solución Semántica al Tratamiento de Atributos Textuales en un Modelo Relacional Orientado a Objetos: Implementación en Software Libre. Doctoral Thesis, Department of Computer Science and Artificial Intelligence, University of Granada, Spain (2008)Google Scholar
  11. 11.
    Martín-Bautista, M.J., Prados, M., Vila, M.A., Martinez-Folgoso, S.: A Knowledge Representation for Short Texts Based on Frequent Itemsets. In: Proceedings of IPMU Conference, pp. 1065–1070 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ursula Torres-Parejo
    • 1
  • Jesús Roque Campaña
    • 1
  • Maria-Amparo Vila
    • 1
  • Miguel Delgado
    • 1
  1. 1.Department of Computer Science and Artificial IntelligenceETSIIT - University of GranadaGranadaSpain

Personalised recommendations