Distinct Interpretations of Importance Query Weights in the Vector p − norm Database Model

  • Gloria Bordogna
  • Alberto Marcellini
  • Giuseppe Psaila
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)


We propose a model for evaluating soft aggregations of selection conditions with unequal importance in flexible queries to databases, where the importance can have distinct semantics: it can be intended as either relative importance weights, minimum acceptance levels of satisfaction of the conditions, or ideal degrees of satisfaction of the conditions. We define distinct evaluation functions within the unifying framework of the vector p-norm that provides an intuitive geometric interpretation of the query.


database flexible querying semantics of importance query weights soft selection conditions soft aggregation operators 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bordogna, G., Pasi, G.: Modeling Vagueness in Information Retrieval. In: Agosti, M., Crestani, F., Pasi, G. (eds.) ESSIR 2000. LNCS, vol. 1980, pp. 207–241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Bordogna, G., Psaila, G.: Customizable Flexible Querying for Classical Relational Databases. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 191–217. Information Science Reference, Hershey (2008)CrossRefGoogle Scholar
  3. 3.
    Bordogna, G., Psaila, G.: Soft Aggregation in Flexible Databases Querying based on the Vector p-norm. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 17(1), 25–40 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bosc, P., Kacprzyk, J.: Fuzziness in database management systems. Physica-Verlag, Heidelberg (1995)zbMATHGoogle Scholar
  5. 5.
    Bosc, P., Lietard, L.: Quantified statements and some interpretations for the OWA operators. In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and Applications, pp. 241–257. Kluwer, Boston (1997)CrossRefGoogle Scholar
  6. 6.
    Bosc, P., Pivert, O.: SQLf: A relational database language for fuzzy querying. IEEE Transactions on Fuzzy Systems 3(1), 1–17 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chomicki, J.: Preference formulas in relational queries. ACM Trans. on Database Systems 28(4), 427–466 (2003)CrossRefGoogle Scholar
  8. 8.
    Dubois, D., Prade, H.: Bipolarity in Flexible Querying. In: Andreasen, T., Motro, A., Christiansen, H., Larsen, H.L. (eds.) FQAS 2002. LNCS (LNAI), vol. 2522, pp. 174–182. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dujmović, J.J., Fang, W.Y.: An Empirical Analysis of Assessment Errors for Weights and Andness in LSP Criteria. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 139–150. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. International Journal of Approximate Reasoning 46(3), 423–446 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Galindo, J.: Handbook of Research on Fuzzy Information Processing in Databases. IGI Global (2008)Google Scholar
  12. 12.
    Kacprzyk, J., Zadrozny, S.: Implementation of OWA operators in fuzzy querying for Microsoft Access. In: Yager, R.R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and Applications, pp. 293–306. Kluwer, Boston (1997)CrossRefGoogle Scholar
  13. 13.
    Kacprzyk, J., Ziolkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Transactions on Systems, Man and Cybernetics 16, 474–479 (1986)CrossRefGoogle Scholar
  14. 14.
    Kießling, W., Kostler, G.: Preference SQL– Design, Implementation, Experiences. In: Proc. of the 28th VLDB Conf., Hong Kong (2002)Google Scholar
  15. 15.
    Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proc. of 13th Conf. VLDB, Brighton, GB, pp. 217–225 (1987)Google Scholar
  16. 16.
    Larsen, H.L.: Importance weighted OWA aggregation of multicriteria queries. In: Proc. of NAFIPS 1999, New York, pp. 740–744 (1999)Google Scholar
  17. 17.
    Lietard, L., Rocacher, D., Tbahriti, S.E.: Towards an extended SQLf: Bipolar query language with preferences. International Journal of Applied Mathematics and Computer Sciences 4(1), 58–63 (2008)Google Scholar
  18. 18.
    Petry, F.E.: Fuzzy Databases. Kluwer Academic Pub. (1996)Google Scholar
  19. 19.
    Salton, G., McGill, M.J.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  20. 20.
    Tineo Rodríguez, L.J.: Extending RDBMS for Allowing Fuzzy Quantified Queries. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 407–416. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Zadrozny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying. J. Intell. Inf. Syst. 33, 307–325 (2009)CrossRefGoogle Scholar
  23. 23.
    Zadrozny, S., Kacprzyk, J.: Bipolar Queries: An Approach and its Various Interpretations. In: Proc. of IFSA-EUSFLAT 2009, pp. 1288–1293 (2009) ISBN: 978-989-95079-6-8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gloria Bordogna
    • 1
  • Alberto Marcellini
    • 1
  • Giuseppe Psaila
    • 2
  1. 1.CNR IDPADalmineItaly
  2. 2.Engineering FacultyUniversity of BergamoDalmineItaly

Personalised recommendations