Advertisement

Rough Derivatives as Dynamic Granules in Rough Granular Calculus

  • Andrzej Skowron
  • Jarosław Stepaniuk
  • Andrzej Jankowski
  • Jan G. Bazan
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)

Abstract

We discuss the motivation for investigations on rough calculus and some steps toward development of rough calculus based on the rough set approach. In particular, we introduce rough derivatives represented by dynamic granules.

Keywords

rough sets reasoning about changes hierarchical modeling granular computing relation (function) approximation rough calculus intelligent systems computational finance forex algorithmic trading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazan, J.G.: Hierarchical Classifiers for Complex Spatio-temporal Concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Burgin, M.: Neoclassical Analysis: Calculus Closer to the Real World. Nova Science Publishers, Inc., New York (2007)zbMATHGoogle Scholar
  3. 3.
    Gabbay, D.M., Schlechta, K.: Logical Tools for Handling Change in Agent-Based Systems. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  4. 4.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Hüllermeier, E.: Case-Based Approximate Reasoning. Springer, Dordrecht (2007)Google Scholar
  6. 6.
    Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa - Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)Google Scholar
  7. 7.
    Nguyen, S.H., Bazan, J.G., Skowron, A., Nguyen, H.S.: Layered Learning for Concept Synthesis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 187–208. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Nguyen, H.S., Jankowski, A., Peters, J.F., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of Process Models from Data and Domain Knowledge: A Rough-Granular Approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, pp. 16–47. IGI Global, Hershey (2010)CrossRefGoogle Scholar
  10. 10.
    Noë, A.: Action in Perception. MIT Press, Cambridge (2004)Google Scholar
  11. 11.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  12. 12.
    Pawlak, Z.: Rough calculus. In: Proceedings of the Second Annual Joint Conference on Information Sciences, Wrightsville Beach, NC, USA, September 28-October 1, pp. 344–345 (1995)Google Scholar
  13. 13.
    Pawlak, Z.: Rough sets, rough functions and rough calculus. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization, A New Trend in Decision Making, pp. 99–109. Springer, Singapore (1999)Google Scholar
  14. 14.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets; Rough sets: Some extensions; Rough sets and boolean reasoning. Information Sciences 177(1), 3–27, 28–40, 41–73 (2007)Google Scholar
  15. 15.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)Google Scholar
  16. 16.
    Polkowski, L., Lin, T.Y., Tsumoto, S. (eds.): Rough Set Methods and Applications: New Developments in Knowledge Discovery in Information Systems. STUDFUZZ, vol. 56. Springer-Verlag/Physica-Verlag, Heidelberg (2000)Google Scholar
  17. 17.
    Ramsay, J.O., Silverman, B.W.: Applied Functional Data Analysis. Springer, Berlin (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Skowron, A., Stepaniuk, J.: Approximation spaces in rough–granular computing. Fundamenta Informaticae 100, 141–157 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Skowron, A., Stepaniuk, J.: Data driven approximate reasoning about changes. In: Szczuka, M., Czaja, L., Skowron, A., Kacprzak, M. (eds.) International Workshop on Concurrency, Specification and Programming, CS&P 2011, Pultusk, September 28-30, pp. 477–486. Bialystok University of Technology, Humboldt University, Warsaw University (2011)Google Scholar
  22. 22.
    Skowron, A., Stepaniuk, J., Swiniarski, R.: Modeling rough granular computing based on approximation spaces. Information Sciences 184, 20–43 (2012)CrossRefGoogle Scholar
  23. 23.
    Skowron, A., Wasilewski, P.: Information systems in modeling interactive computations on granules. Theoretical Computer Science 412(42), 5939–5959 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. Springer (2008)Google Scholar
  25. 25.
    Suraj, Z.: Rough set methods for the synthesis and analysis of concurrent processes. In: Polkowski et al [16], pp. 379–488Google Scholar
  26. 26.
    Ślęzak, D., Wróblewski, J.: Roughfication of Numeric Decision Tables: The Case Study of Gene Expression Data. In: Yao, J., Lingras, P., Wu, W.-Z., Szczuka, M.S., Cercone, N.J., Ślęzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol. 4481, pp. 316–323. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York (1998)zbMATHGoogle Scholar
  28. 28.
    van der Aalst, W.M.P. (ed.): Process Mining Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Skowron
    • 1
  • Jarosław Stepaniuk
    • 2
  • Andrzej Jankowski
    • 1
    • 3
  • Jan G. Bazan
    • 1
    • 4
  1. 1.Institute of MathematicsThe University of WarsawWarsawPoland
  2. 2.Department of Computer ScienceBiałystok University of TechnologyBiałystokPoland
  3. 3.Institute of Computer ScienceWarsaw University of TechnologyWarsawPoland
  4. 4.Institute of Computer ScienceUniversity of RzeszówRzeszówPoland

Personalised recommendations