Advertisement

Abstract

In this paper, we propose a rough-granular computing framework for mining relational data. We adapt the tolerance rough set model for relational data analysis. We introduce two ways for constructing the universe from relational data. Due to applying granular computing methods, one can overcome problems such as relational data representation and the search space limitation. We also show how the proposed framework can be applied to data mining tasks such as classification.

Keywords

multi-relational data mining rough sets granular computing classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bain, M.: Predicate Invention and the Revision of First-Order Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 329–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers, Boston (2003)zbMATHGoogle Scholar
  3. 3.
    Bargiela, A., Pedrycz, W.: Toward a theory of granular computing for human-centered information processing. IEEE T. Fuzzy Systems 16(2), 320–330 (2008)CrossRefGoogle Scholar
  4. 4.
    De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)zbMATHCrossRefGoogle Scholar
  5. 5.
    Džeroski, S., Lavrač, N.: Relational Data Mining. Springer, Berlin (2001)zbMATHGoogle Scholar
  6. 6.
    Helft, N.: Inductive generalization: A logical framework. In: Bratko, I., Lavrac, N. (eds.) Progress in Machine Learning-Proceedings of EWSL 1987: 2nd European Working Session on Learning, pp. 149–157. Sigma Press, Wilmslow (1987)Google Scholar
  7. 7.
    Hońko, P.: Classification of Complex Structured Objects on the Base of Similarity Degrees. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 553–563. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hońko, P.: Simialrity-based classification in relational databases. Fundam. Inform. 101(3), 187–213 (2010)zbMATHGoogle Scholar
  9. 9.
    Liu, C., Zhong, N.: Rough problem settings for ILP dealing with imperfect data. Comput. Intell. 17(3), 446–459 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Martienne, E., Quafafou, M.: Learning Logical Descriptions for Document Understanding: A Rough Sets-Based Approach. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 202–209. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Midelfart, H., Komorowski, J.: A Rough Set Approach to Inductive Logic Programming. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 190–198. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Milton, R.S., Maheswari, V.U., Siromoney, A.: Rough Sets and Relational Learning. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 321–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  14. 14.
    Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing. Wiley & Sons, New York (2008)CrossRefGoogle Scholar
  15. 15.
    Skowron, A., Stepaniuk, J., Swiniarski, R.: Modeling rough granular computing based on approximation spaces. Inf. Sci. 184, 20–43 (2012)CrossRefGoogle Scholar
  16. 16.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundam. Inform., 245–253 (1996)Google Scholar
  17. 17.
    Stepaniuk, J.: Knowledge discovery by application of rough set models. In: Polkowski, S.T., Lin, T. (eds.) Rough Set methods and applications: New Developments in Knowledge Discovery in Information Systems, pp. 137–233. Physica-Verlag, Heidelberg (2000)Google Scholar
  18. 18.
    Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data Mining. SCI, vol. 152. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  19. 19.
    Stepaniuk, J., Hońko, P.: Learning first-order rules: A rough set approach. Fundam. Inform. 61, 139–157 (2004)zbMATHGoogle Scholar
  20. 20.
    Yao, Y.Y.: Granular computing: Basic issues and possible solutions. In: Proc. the 5th Joint Conference on Information Sciences, pp. 186–189 (2000)Google Scholar
  21. 21.
    Zadeh, L.A.: Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Set Syst. 90(2), 111–127 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Piotr Hońko
    • 1
  1. 1.Department of Computer ScienceBiałystok University of TechnologyBiałystokPoland

Personalised recommendations