Advertisement

Management of Information Incompleteness in Rough Non-deterministic Information Analysis

  • Hiroshi Sakai
  • Michinori Nakata
  • Dominik Ślęzak
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)

Abstract

Rough Non-deterministic Information Analysis (RNIA) is a mathematical framework for handling tables with exact and inexact data. Within this framework, we are developing algorithms aimed at rule generation and direct question-answering. In this paper, we investigate different forms and interpretations of data incompleteness, and show how algorithms implemented in RNIA manipulate them.

Keywords

Rough sets Information incompleteness Data analysis Rule generation Direct question-answering Apriori algorithm Prolog 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
  3. 3.
    Dembczyński, K., Greco, S., Słowiński, R.: Rough Set Approach to Multiple Criteria Classification with Imprecise Evaluations and Assignments. European J. Operational Research 198, 626–636 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Grzymała-Busse, J.W.: Data with Missing Attribute Values: Generalization of Indiscernibility Relation and Rule Induction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 78–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kryszkiewicz, M.: Rules in Incomplete Information Systems. Information Sciences 113, 271–292 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Lipski, W.: On Semantic Issues Connected with Incomplete Information Data Base. ACM Trans. DBS. 4, 269–296 (1979)Google Scholar
  7. 7.
    Lipski, W.: On Databases with Incomplete Information. Journal of the ACM 28, 41–70 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Orłowska, E., Pawlak, Z.: Representation of Nondeterministic Information. Theoretical Computer Science 29, 27–39 (1984)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pawlak, Z.: Information systems theoretical foundations. Information Systems 6(3), 205–218 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets. Kluwer Academic Publishers (1991)Google Scholar
  11. 11.
  12. 12.
    Sakai, H., Okuma, A.: Basic Algorithms and Tools for Rough Non-deterministic Information Analysis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 209–231. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and Apriori Algorithm in Non-deterministic Information Systems. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 328–350. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Sakai, H., Nakata, M., Ślęzak, D.: Rule Generation in Lipski’s Incomplete Information Databases. In: Szczuka, M., Kryszkiewicz, M., Ramanna, S., Jensen, R., Hu, Q. (eds.) RSCTC 2010. LNCS (LNAI), vol. 6086, pp. 376–385. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Sakai, H., Okuma, H., Nakata, M., Ślęzak, D.: Stable rule extraction and decision making in rough non-deterministic information analysis. International Journal of Hybrid Intelligent Systems 8(1), 41–57 (2011)zbMATHGoogle Scholar
  16. 16.
    Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Intelligent Decision Support - Handbook of Advances and Applications of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers (1992)Google Scholar
  17. 17.
    UCI Machine Learning Repository, http://mlearn.ics.uci.edu/MLRepository.html
  18. 18.
    Zadeh, L.A.: Toward a Theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90, 111–127 (1997)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hiroshi Sakai
    • 1
  • Michinori Nakata
    • 2
  • Dominik Ślęzak
    • 3
    • 4
  1. 1.Mathematical Sciences Section, Department of Basic Sciences, Faculty of EngineeringKyushu Institute of TechnologyTobataJapan
  2. 2.Faculty of Management and Information ScienceJosai International UniversityToganeJapan
  3. 3.Institute of MathematicsUniversity of WarsawWarsawPoland
  4. 4.Infobright Inc., PolandWarsawPoland

Personalised recommendations