Coordinate-Based Pattern-Mining on Functional Neuroimaging Databases

  • Julian Caspers
  • Karl Zilles
  • Simon B. Eickhoff
  • Christoph Beierle
Part of the Communications in Computer and Information Science book series (CCIS, volume 297)


Aiming to exploit the rich fundus of available functional neuroimaging data, we present a coordinate-based pattern-mining approach. Gaussian mixture modeling is applied on three-dimensional brain coordinates obtained from neuroimaging databases collecting peak activations seen in functional neuroimaging experiments. We show how the Apriori algorithm used in association analysis can be applied to the obtained results, revealing frequent patterns of the identified coordinate clusters. These patterns can be interpreted as common networks of functionally connected brain regions and hence give deeper insights into the functional organization of the human brain.


Brain Region Functional Connectivity Bayesian Information Criterion Gaussian Mixture Modeling Frequent Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD 1993, pp. 207–216. ACM Press, New York (1993)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. VLDB 1994, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  3. 3.
  4. 4.
    Caspers, J., Zilles, K., Eickhoff, S.B., Beierle, C.: PaMiNI: a comprehensive system for mining frequent neuronal patterns of the human brain. In: Proc. CBMS 2012. IEEE Press, New York (2012)Google Scholar
  5. 5.
    Cherry, S.R., Phelps, M.E.: Imaging brain function with positron emission tomography. In: Toga, A.W., Mazziotta, J.C. (eds.) Brain Mapping: the Methods, 2nd edn., pp. 485–511. Academic Press, San Diego (2002)CrossRefGoogle Scholar
  6. 6.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statistical Society, Series B 39, 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Eickhoff, S.B., Grefkes, C.: Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin. EEG Neurosci. 42(2), 107–121 (2011)CrossRefGoogle Scholar
  8. 8.
    Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T.: Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain. Map. 30, 2907–2926 (2009)CrossRefGoogle Scholar
  9. 9.
    Evans, A.C., Collins, D.L., Mills, S.R., Brown, E.D., Kelly, R.L., Peters, T.M.: 3D statistical neuroanatomical models from 305 MRI volumes. In: Proc. IEEE-NSS 1993, vol. 3, pp. 1813–1817. IEEE Press, New York (1993)Google Scholar
  10. 10.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain. Map. 2, 56–78 (1994)CrossRefGoogle Scholar
  11. 11.
    Gan, G., Ma, C., Wu, J.: Data clustering: theory, algorithms, and applications, ch. 14, pp. 227–242. SIAM, Philadelphia (2007)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jezzard, P., Matthews, P.M., Smith, S.M.: Functional MRI: an introduction to methods. Oxford University Press, Oxford (2001)Google Scholar
  13. 13.
    Laird, A.R., Lancaster, J.L., Fox, P.T.: Brainmap: the social evolution of a human brain mapping database. Neuroinformatics 3, 65–78 (2005)CrossRefGoogle Scholar
  14. 14.
    Raichle, M.E.: Behind the scenes of functional brain imaging: a history and physiological perspective. Proc. Natl. Acad. Sci. USA 95, 765–772 (1998)CrossRefGoogle Scholar
  15. 15.
    Robinson, J.L., Laird, A.R., Glahn, D.C., Lovallo, W.R., Fox, P.T.: Metaanalytic connectivity modeling: delineating the functional connectivity of the human amygdala. Hum. Brain. Map. 31, 173–184 (2010)Google Scholar
  16. 16.
    Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A.R., Schulz, J.B., Fox, P.T., Eickhoff, S.B.: Modelling neural correlates of working memory: a coordinate-based meta-analysis. Neuroimage 60, 830–846 (2012)CrossRefGoogle Scholar
  17. 17.
    Savoy, R.L.: History and future directions of human brain mapping and functional neuroimaging. Acta Psychol. 107, 9–42 (2001)CrossRefGoogle Scholar
  18. 18.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)zbMATHCrossRefGoogle Scholar
  19. 19.
    Talairach, J., Tournoux, P.: Coplanar stereotaxic atlas of the human brain. Thieme, Stuttgart (1988)Google Scholar
  20. 20.
    The MathWorks, Inc.,
  21. 21.
    Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A.: Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16(3), 765–780 (2002)CrossRefGoogle Scholar
  22. 22.
    Wager, T.D., Jonides, J., Reading, S.: Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22(4), 1679–1693 (2004)CrossRefGoogle Scholar
  23. 23.
    Wager, T.D., Lindquist, M.: Kaplan L. Meta-analysis of functional neuroimaging data: current and future directions. Soc. Cogn. Affect. Neurosci. 2(2), 150–158 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julian Caspers
    • 1
    • 2
    • 3
  • Karl Zilles
    • 1
    • 3
    • 4
  • Simon B. Eickhoff
    • 1
    • 5
  • Christoph Beierle
    • 2
  1. 1.Research Centre JülichInstitute of Neuroscience and Medicine (INM-2)Germany
  2. 2.Department of Computer ScienceFernUniversität in HagenGermany
  3. 3.C. & O. Vogt Institute for Brain ResearchUniversity of DüsseldorfGermany
  4. 4.JARA-BRAIN, Jülich Aachen Research AllianceGermany
  5. 5.Institute of Clinical Neuroscience and Medical PsychologyUniversity Hospital DüsseldorfGermany

Personalised recommendations